Photoacoustic imaging is an emerging technology that can provide anatomic, functional, and molecular information about biological tissue. Intravascular spectroscopic and molecular photoacoustic imaging can potentially improve the identification of atherosclerotic plaque composition, the detection of inflammation, and ultimately the risk stratification of atherosclerosis. In this study, a first-of-its-kind intravascular optical-resolution photoacoustic tomography (OR-PAT) system with a 1.1 mm diameter catheter is developed, offering optical-diffraction limited transverse resolution as fine as 19.6 μm, ∼10-fold finer than that of conventional intravascular photoacoustic and ultrasonic imaging. To offer complementary imaging information and depth, the system also acquires co-registered intravascular ultrasound images in parallel. Imaging of an iliac stent and a lipid phantom shows that the high resolution and contrast of OR-PAT can enable improved stent implantation guidance and lipid identification. In the future, these capabilities may ultimately improve the diagnosis and interventional treatment of vulnerable atherosclerotic plaques, which are prone to cause thrombotic complications such as myocardial infarction and stroke.
Optical-resolution photoacoustic microscopy (OR-PAM) is becoming a vital tool for studying the microcirculation system in vivo. By increasing the numerical aperture of optical focusing, the lateral resolution of OR-PAM can be improved; however, the depth of focus and thus the imaging range will be sacrificed correspondingly. In this work, we report our development of blind-deconvolution optical-resolution photoacoustic microscopy (BD-PAM) that can provide a lateral resolution ~2-fold finer than that of conventional OR-PAM (3.04 vs. 5.78μm), without physically increasing the system's numerical aperture. The improvement achieved with BD-PAM is demonstrated by imaging graphene nanoparticles and the microvasculature of mice ears in vivo. Our results suggest that BD-PAM may become a valuable tool for many biomedical applications that require both fine spatial resolution and extended depth of focus.
Endoscopy is an essential clinical tool for the diagnosis of gastrointestinal (GI) tract cancer. A photoacoustic system that elegantly combines optical and ultrasound endoscopy advantages by providing high-sensitivity functional information and large imaging depth is a potentially powerful tool for GI tract imaging. Recently, several photoacoustic endoscopic imaging systems have been proposed and developed. However, the relatively large size and rigid length of the catheter make it difficult to translate them into wide clinical applications; while the existing system of a relatively small catheter, capable of in vivo animal imaging, is unable to acquire full (360°) field-of-view cross-section images. In this study, we developed a photoacoustic/ultrasonic dual-modality endoscopic system and a corresponding miniaturized, encapsulated imaging catheter, which provides a full 360° field-of-view. The diameter of the catheter is 2.5 mm, which is compatible with the 2.8-mm instrumental channel of a conventional clinical optical endoscope. Using this system, we demonstrate in vivo 3-dimensional endoscopic photoacoustic/ultrasonic imaging of the colorectum of a healthy Sprague Dawley rat, by depicting vasculature and morphology of the GI tract. The significantly improved imaging field of view, reduced catheter size, high-quality imaging results suggest that the developed photoacoustic/ultrasonic dual-modality endoscopy has a great potential to be translated into a broad range of clinical applications in gastroenterology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.