Long noncoding RNAs (lncRNAs), a family of noncoding RNA transcripts with a length of <200 nucleotides (nts), have been associated with the pathological development of various types of carcinogenesis. Focally amplified lncRNA on chromosome 1 (FAL1) is a recently identified lncRNA. In the current study, we aimed to investigate the physiological function of FAL1 in esophageal squamous cell carcinoma (ESCC). Our findings demonstrate that FAL1 was associated with esophageal cancer cell survival by regulating mitochondrial fission. First, we found that the expression of the mitochondrial fission protein dynamin‐related protein 1 (DRP1) was significantly reduced, but the expression of the mitochondrial fusion protein mitofusin 1 (Mfn1) was increased in ESCC tissues and esophageal cancer cell lines as compared with adjacent normal tissues and a normal esophagus epithelial cell line. In addition, we found that reduced expression of DRP1 in the esophageal cancer cell lines KYSE450 and EC9706 cells was associated with increased expression of FAL1. Inhibition of FAL1 promoted mitochondrial fission and mitochondrial dysfunction in KYSE450 and EC9706 cells mediated by DRP1. Silencing of DRP1 abolished FAL1‐induced apoptosis through a mitochondrial‐dependent pathway. Our findings suggest that FAL1/DRP1 could be a therapeutic target for the treatment of ESCC. © 2018 IUBMB Life, 71(1):254–260, 2019
As an essential component of eukaryotic cells, the nuclear envelope (NE) plays a crucial role in many physiological processes. At present, a few membrane proteins from NE have been functionally characterized. To determine whether the inner nuclear membrane (INM) protein Nurim is expressed in cancer cells with evidence of apoptosis, we identified three isoforms of this protein that are specific for human testicular seminoma and are generated by alternative splicing. We observed that Nurim is expressed in a broad range of cancer types and that its expression level is correlated with a higher tumor grade. Biochemical analysis showed that Nurim b, like a, is tightly bound to the nuclear envelope. Furthermore, knockdown using miR-Nurim resulted in an abnormal shape change of the nuclear envelope. Notably, Nurim knockdown obviously increased apoptosis induced by ultraviolet in HeLa cells. Together, these findings implicate that the INM protein Nurim plays an important role in the suppression of apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.