Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their practical application. Here, we demonstrate high-performance PeSCs with superior reproducibility by introducing small amounts of N-cyclohexyl-2-pyrrolidone (CHP) as a morphology controller into N,N-dimethylformamide (DMF). As a result, highly homogeneous film morphology, similar to that achieved by vacuum-deposition methods, as well as a high PCE of 10% and an extremely small performance deviation within 0.14% were achieved. This study represents a method for realizing efficient and reproducible planar heterojunction (PHJ) PeSCs through morphology control, taking a major step forward in the low-cost and rapid production of PeSCs by solving one of the biggest problems of PHJ perovskite photovoltaic technology through a facile method.
In this work, we synthesized water-soluble polyfluorene derivatives (WPFs) with anionic and/or cationic side chains, which were used as an indium tin oxide (ITO) cathode interfacial layer in inverted polymer solar cells. Three WPFs (WPFN+, WPFZW, and WPFS-) were obtained via Suzuki coupling reactions. Their solubility in polar solvents allowed the WPFs to be used as interfacial layers in inverted polymer solar cells (I-PSCs). Among the WPF-modified ITO electrodes, WPFN+ (with ammonium side chains)-modified ITO can be used as a cathode for electron extraction, while WPFS- (with sulfonate side chains)-modified ITO cannot extract electrons in I-PSCs based on poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM). The electron extraction of WPF-modified ITO can mainly be attributed to the different dipole formations at the WPF/ITO interfaces, based on the types of ionic groups on the side chains of the polyfluorene. In addition, we observed that the extent of ITO work-function modification was not always exactly correlated with the device performance based on the results obtained using a WPFZW (with ammonium and sulfonate side chains)-modified ITO electrode.
Organometallic halide perovskite-based solar cells have exhibited rapidly increasing efficiencies through the use of mesoporous composites. The addition of materials used in organic solar cells to perovskite-based solar cells (PSCs) enables the fabrication of low-cost, flexible, low-temperature, solutionprocessed PSCs. However, obtaining sufficient coverage of the organic layer, usually poly(3,4-ethylenedioxythiophene)−poly(styrenesulfonate) (PEDOT:PSS), with CH 3 NH 3 PbI 3−x Cl x films remains difficult in spite of the advances. In this study, we investigated the influence of controlling the solvent evaporation rate on the degree of PEDOT:PSS surface coverage by CH 3 NH 3 PbI 3−x Cl x . We determined that an adequately fast spinning speed, drying at room temperature, and stepwise ramp annealing are critical for obtaining optimized planar hybrid perovskite solar cells with an ITO/PEDOT:PSS/CH 3 NH 3 PbI 3−x Cl x /PCBM/Al structure and efficiencies of up to 11.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.