Ayurveda based nanomaterials are recently conceptualized phenomena for biomedical applications especially for imaging and treatment of in vitro cancer cell. Wide range florescent (blue to red emission) quantum dots are versatile materials for imaging and sensing applications. Various procedures and precursors of fluorescent carbon quantum dots (CQDs) are well established and documented in the literature. However, expensive precursors and production, and time consuming process limit their economical design that need to be addressed. Herein, we report a cost effective simple route for fluorescent CQDs by using affordable ayurvedic plant's precursors such as Azadirachta Indica, OcimumTenuiflorum and Tridax Procumbens. Obtained quantum dots from ayurvedic plant leaves namely CQDs-1 (AzadirachtaIndica), CQDs-2 (OcimumTenuiflorum) and CQDs-3 (TridaxProcumbens) showed homogeneous size distribution (∼6–12 nm) and green fluorescent nature, average photo-stability, biocompatibility (more than 85 %), cancer cell imaging and promising phototherapy for cancer and bacterial cell lines.
The silver nanoparticle was successfully synthesized by using the help of Phyllanthus emblica plant extract as a reducing agent and aqueous silver nitrate as the precursor. Moreover, physical and chemical methods are widely used for the synthesis of nanoparticles, but these methods have expensive and not ecofriendly. This study highlights the green, rapid, facile, cost-effective, and ecofriendly synthesis and synthesized nanoparticles also investigate their antibacterial activity. Synthesized silver nanoparticles are analyzed by different techniques of modes like XRD, UV-Visible spectroscopy, TEM, FTIR, and photoluminescence (PL). The prepared AgNPs show characteristic absorption peak in UV-Visible spectroscopy due to SPR (surface plasmonic resonance) band between 400 to 450 nm wavelength, which was confirmed by TEM (transmission electron microscopy) image. X-ray diffraction (XRD) results showed the crystalline nature of AgNPs as well as the size of nanoparticles calculated with the help of TEM (20-25 nm) and XRD (25 nm). ATR spectroscopy identified the functional groups that are involved in the reduction of silver ion to AgNPs and the PL spectrum indicates higher emission in the green region and low emission peak in the UV region. Antibacterial activity of AgNPs analyzed against with the help of E.Coli bacteria and the result shows that a higher concentration of AgNPs is increasing as well as a zone of inhibition increased. This method is environmentally friendly, of low cost, and less expensive method for the fabrication of AgNPs in abundance which can be further helpful for biosensor devices as well as for other applications such as pollutant degradation, pharmaceutical, and hydrogen production, etc therefore can promote the application of green technology for the production of AgNPs.
Sn), and ultraviolet-visible light spectroscopic studies. The spectroscopic data showed that the ligands are monobasic bidentate, coordinating through nitrogen and sulfur/oxygen atoms. Thus, suitable trigonal bipyramidal geometry and octahedral geometry have been suggested for the 1:1, and 1:2 metal complexes, respectively. The ligands and their complexes have been tested against various microbes for their in vitro antimicrobial activities. All complexes exhibit good antibacterial activity against the two bacterial species Escherichia coli and Staphylococcus aureus and remarkable antifungal activity against the two fungi Fusarium semitectum and Aspergillus flavus with respect to their corresponding ligands. The DNA cleavage efficiency of the ligands and the complexes has also been examined and discussed using gel electrophoresis technique, which showed the cleavage of DNA by all the metal complexes and ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.