In this paper, we focus on creating a keywords extractor especially for a given job description job-related text corpus for better search engine optimization using attention based deep learning techniques. Millions of jobs are posted but most of them end up not being located due to improper SEO and keyword management. We aim to make this as easy to use as possible and allow us to use this for a large number of job descriptions very easily. We also make use of these algorithms to screen or get insights from large number of resumes, summarize and create keywords for a general piece of text or scientific articles. We also investigate the modeling power of BERT (Bidirectional Encoder Representations from Transformers) for the task of keyword extraction from job descriptions. We further validate our results by providing a fully-functional API and testing out the model with real-time job descriptions.
Recent increases in computational power and the development of specialized architecture led to the possibility to perform machine learning, especially inference, on the edge. OpenVINO is a toolkit based on convolutional neural networks that facilitates fast-track development of computer vision algorithms and deep learning neural networks into vision applications, and enables their easy heterogeneous execution across hardware platforms. A smart queue management can be the key to the success of any sector. In this paper, we focus on edge deployments to make the smart queuing system (SQS) accessible by all also providing ability to run it on cheap devices. This gives it the ability to run the queuing system deep learning algorithms on pre-existing computers which a retail store, public transportation facility or a factory may already possess, thus considerably reducing the cost of deployment of such a system. SQS demonstrates how to create a video AI solution on the edge. We validate our results by testing it on multiple edge devices, namely CPU, integrated edge graphic processing unit (iGPU), vision processing unit (VPU) and field-programmable gate arrays (FPGAs). Experimental results show that deploying a SQS on edge is very promising.
In this paper, we focus on creating a keywords extractor especially for a given job description job-related text corpus for better search engine optimization using attention based deep learning techniques. Millions of jobs are posted but most of them end up not being located due to improper SEO and keyword management. We aim to make this as easy to use as possible and allow us to use this for a large number of job descriptions very easily. We also make use of these algorithms to screen or get insights from large number of resumes, summarize and create keywords for a general piece of text or scientific articles. We also investigate the modeling power of BERT (Bidirectional Encoder Representations from Transformers) for the task of keyword extraction from job descriptions. We further validate our results by providing a fully-functional API and testing out the model with real-time job descriptions.
Most of the people in the world face a problem of forgetting to take their medicines on time this device will help them to take their medicines on right time. It can also be used for deaf and blind people, it will also have a band with it which will have vibrator and LED (Light Emitting Diode) flasher as indicator so the user can be alerted about taking medicines. After this he has to go to the Medicine Dispenser and spread his hand. The device will detect the hand and according to the time will dispense the appropriate medicine. With some modifications this device can also be installed on streets and people can withdraw their required medicines, here a RFID (Radio Frequency Identification) card can be used to store the data and identify the person and validate it.
In this paper, we focus on creating a keywords extractor especially for a given job description job-related text corpus for better search engine optimization using attention based deep learning techniques. Millions of jobs are posted but most of them end up not being located due to improper SEO and keyword management. We aim to make this as easy to use as possible and allow us to use this for a large number of job descriptions very easily. We also make use of these algorithms to screen or get insights from large number of resumes, summarize and create keywords for a general piece of text or scientific articles. We also investigate the modeling power of BERT (Bidirectional Encoder Representations from Transformers) for the task of keyword extraction from job descriptions. We further validate our results by providing a fully-functional API and testing out the model with real-time job descriptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.