The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified over 100 selective sweeps specific to domestic rabbits, but only a relatively small number of fixed (or nearly fixed) SNPs for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved non-coding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that due to a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few ‘domestication loci’.
An F(2) resource population, derived from a broiler x layer cross, was used to map quantitative trait loci (QTL) for body weights at days 1, 35 and 41, weight gain, feed intake, feed efficiency from 35 to 41 days and intestinal length. Up to 577 F(2) chickens were genotyped with 103 genetic markers covering 21 linkage groups. A preliminary QTL mapping report using this same population focused exclusively on GGA1. Regression methods were applied to line-cross and half-sib models for QTL interval mapping. Under the line-cross model, eight QTL were detected for body weight at 35 days (GGA2, 3 and 4), body weight at 41 days (GGA2, 3, 4 and 10) and intestine length (GGA4). Under the half-sib model, using sire as common parent, five QTL were detected for body weight at day 1 (GGA3 and 18), body weight at 35 days (GGA2 and 3) and body weight at 41 days (GGA3). When dam was used as common parent, seven QTL were mapped for body weight at day 1 (GGA2), body weight at day 35 (GGA2, 3 and 4) and body weight at day 41 (GGA2, 3 and 4). Growth differences in chicken lines appear to be controlled by a chronological change in a limited number of chromosomal regions.
The analysis of introgression of genomic regions between divergent populations provides an excellent opportunity to determine the genetic basis of reproductive isolation during the early stages of speciation. However, hybridization and subsequent gene flow must be relatively common in order to localize individual loci that resist introgression. In this study, we used next-generation sequencing to study genome-wide patterns of genetic differentiation between two hybridizing subspecies of rabbits (Oryctolagus cuniculus algirus and O. c. cuniculus) that are known to undergo high rates of gene exchange. Our primary objective was to identify specific genes or genomic regions that have resisted introgression and are likely to confer reproductive barriers in natural conditions. On the basis of 326,000 polymorphisms, we found low to moderate overall levels of differentiation between subspecies, and fewer than 200 genomic regions dispersed throughout the genome showing high differentiation consistent with a signature of reduced gene flow. Most differentiated regions were smaller than 200 Kb and contained very few genes. Remarkably, 30 regions were each found to contain a single gene, facilitating the identification of candidate genes underlying reproductive isolation. This gene-level resolution yielded several insights into the genetic basis and architecture of reproductive isolation in rabbits. Regions of high differentiation were enriched on the X-chromosome and near centromeres. Genes lying within differentiated regions were often associated with transcription and epigenetic activities, including chromatin organization, regulation of transcription, and DNA binding. Overall, our results from a naturally hybridizing system share important commonalities with hybrid incompatibility genes identified using laboratory crosses in mice and flies, highlighting general mechanisms underlying the maintenance of reproductive barriers.
An F(2) population established by crossing a broiler male line and a layer line was used to map quantitative trait loci (QTL) affecting abdominal fat weight, abdominal fat percentage and serum cholesterol and triglyceride concentrations. Two genetic models, the line-cross and the half-sib, were applied in the QTL analysis, both using the regression interval method. Three significant QTL and four suggestive QTL were mapped in the line-cross analysis and four significant and four suggestive QTL were mapped in the half-sib analysis. A total of five QTL were mapped for abdominal fat weight, six for abdominal fat percentage and four for triglyceride concentration in both analyses. New QTL associated with serum triglyceride concentration were mapped on GGA5, GGA23 and GG27. QTL mapped between markers LEI0029 and ADL0371 on GGA3 for abdominal fat percentage and abdominal fat weight and a suggestive QTL on GGA12 for abdominal fat percentage showed significant parent-of-origin effects. Some QTL mapped here match QTL regions mapped in previous studies using different populations, suggesting good candidate regions for fine-mapping and candidate gene searches.
<p style="text-align: justify;"><strong>Aim</strong>: To investigate the characteristics, relationships and trends in the phenology of four winegrape varieties and associated temperature relationships in the Lisbon wine region (LWR), between 1990 and 2011.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Budburst, flowering and véraison dates of red (Castelão and Aragonez, syn. Tempranillo) and white (Chasselas and Fernão Pires) varieties were taken from an experimental vineyard in the LWR. Harvest dates were determined based on a similar maturity level for all varieties. From these data, varietal characteristics, temporal trends as well as relationships between phenology and temperature were assessed through stepwise multivariate linear regressions. Flowering was the most sensitive to temperature in the preceding months (March-April). Differences/similarities between the phenological timing of the different varieties are presented. With few exceptions, no trends were found in phenophases over the 1990-2011 period, whereas several significant negative slopes were displayed for phenological intervals, suggesting a role for accumulated thermal effects in phenological timing. Strong correlations were observed between phenophases, especially between flowering and véraison.</p><p style="text-align: justify;"><strong>Conclusion</strong>: The study highlights the key role played by temperature on phenology, particularly during springtime. Furthermore, an increase in temperature during that period will cause an advance in the timing of the following phenological events. Given the significant trends found, phenological shifts may occur in the long term, emphasizing the need to assess varietal characteristics and responses to regional climate.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: The present work is the first attempt to systematically examine temporal trends in phenology and corresponding relationships with temperature in a Portuguese viticultural area, providing valuable information on the development and suitability of grapevine varieties, which determine viticultural practices and winegrower’s income.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.