Abstract. To help accelerate progress in multi-target, multi-camera tracking systems, we present (i) a new pair of precision-recall measures of performance that treats errors of all types uniformly and emphasizes correct identification over sources of error; (ii) the largest fully-annotated and calibrated data set to date with more than 2 million frames of 1080p, 60fps video taken by 8 cameras observing more than 2,700 identities over 85 minutes; and (iii) a reference software system as a comparison baseline. We show that (i) our measures properly account for bottom-line identity match performance in the multi-camera setting; (ii) our data set poses realistic challenges to current trackers; and (iii) the performance of our system is comparable to the state of the art.
Abstract-Background subtraction methods are widely exploited for moving object detection in videos in many applications, such as traffic monitoring, human motion capture, and video surveillance. How to correctly and efficiently model and update the background model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approaches. This work proposes a general-purpose method that combines statistical assumptions with the objectlevel knowledge of moving objects, apparent objects (ghosts), and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects, ghosts, and shadows are processed differently in order to supply an object-based selective update. The proposed approach exploits color information for both background subtraction and shadow detection to improve object segmentation and background update. The approach proves fast, flexible, and precise in terms of both pixel accuracy and reactivity to background changes.
Data-driven saliency has recently gained a lot of attention thanks to the use of Convolutional Neural Networks for predicting gaze fixations. In this paper we go beyond standard approaches to saliency prediction, in which gaze maps are computed with a feed-forward network, and present a novel model which can predict accurate saliency maps by incorporating neural attentive mechanisms. The core of our solution is a Convolutional LSTM that focuses on the most salient regions of the input image to iteratively refine the predicted saliency map. Additionally, to tackle the center bias typical of human eye fixations, our model can learn a set of prior maps generated with Gaussian functions. We show, through an extensive evaluation, that the proposed architecture outperforms the current state of the art on public saliency prediction datasets. We further study the contribution of each key component to demonstrate their robustness on different scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.