Abstract. To help accelerate progress in multi-target, multi-camera tracking systems, we present (i) a new pair of precision-recall measures of performance that treats errors of all types uniformly and emphasizes correct identification over sources of error; (ii) the largest fully-annotated and calibrated data set to date with more than 2 million frames of 1080p, 60fps video taken by 8 cameras observing more than 2,700 identities over 85 minutes; and (iii) a reference software system as a comparison baseline. We show that (i) our measures properly account for bottom-line identity match performance in the multi-camera setting; (ii) our data set poses realistic challenges to current trackers; and (iii) the performance of our system is comparable to the state of the art.
CRISPR-Cas systems provide versatile tools for programmable genome editing. Here, we developed a caged RNA strategy that allows Cas9 to bind DNA but not cleave until light-induced activation. This approach, referred to as very fast CRISPR (vfCRISPR), creates double-strand breaks (DSBs) at the submicrometer and second scales. Synchronized cleavage improved kinetic analysis of DNA repair, revealing that cells respond to Cas9-induced DSBs within minutes and can retain MRE11 after DNA ligation. Phosphorylation of H2AX after DNA damage propagated more than 100 kilobases per minute, reaching up to 30 megabases. Using single-cell fluorescence imaging, we characterized multiple cycles of 53BP1 repair foci formation and dissolution, with the first cycle taking longer than subsequent cycles and its duration modulated by inhibition of repair. Imaging-guided subcellular Cas9 activation further facilitated genomic manipulation with single-allele resolution. vfCRISPR enables DNA-repair studies at high resolution in space, time, and genomic coordinates.
The prion protein (PrP) is best known for its association with prion diseases. However, a controversial new role for PrP in Alzheimer disease (AD) has recently emerged. In vitro studies and mouse models of AD suggest that PrP may be involved in AD pathogenesis through a highly specific interaction with amyloid- (A42) oligomers. Immobilized recombinant human PrP (huPrP) also exhibited high affinity and specificity for A42 oligomers. Here we report the novel finding that aggregated forms of huPrP and A42 are co-purified from AD brain extracts. Moreover, an anti-PrP antibody and an agent that specifically binds to insoluble PrP (iPrP) co-precipitate insoluble A from human AD brain. Finally, using peptide membrane arrays of 99 13-mer peptides that span the entire sequence of mature huPrP, two distinct types of A binding sites on huPrP are identified in vitro. One specifically binds to A42 and the other binds to both A42 and A40. Notably, A42-specific binding sites are localized predominantly in the octapeptide repeat region, whereas sites that bind both A40 and A42 are mainly in the extreme N-terminal or C-terminal domains of PrP. Our study suggests that iPrP is the major PrP species that interacts with insoluble A42 in vivo. Although this work indicated the interaction of A42 with huPrP in the AD brain, the pathophysiological relevance of the iPrP/A42 interaction remains to be established. Alzheimer disease (AD)2 is the leading cause of dementia in the elderly and the most common neurodegenerative disorder. The underlying pathology in AD seems to be associated with the accumulation of soluble and insoluble aggregated species of the amyloid- (A) peptide in the brain (1). However, the mechanisms underlying A deposition and neurotoxicity remain poorly understood. The cellular prion protein (PrP C ) is a glycoprotein highly expressed in the brain, and best known for its association with prion diseases. These are unique neurodegenerative disorders with an infectious, sporadic or genetic etiology, and which are characterized by deposition of misfolded, pathological PrP (PrP Sc ) in the brain (2). Interestingly, a recent interpretation of early and newer observations suggests that PrP C may play a role in the pathogenesis of AD (3). Epidemiological studies suggest that the Met/Val polymorphism at residue 129 in PrP modulates the number of A deposits (4). Also, pathological evidence indicates that PrP deposits often accompany A plaques in AD (5-7). Moreover, transgenic mice expressing mutant amyloid precursor protein (APP) and overexpressing hamster PrP C present an exacerbated A plaque burden (8). The circumstantial evidence of an association between PrP and A was greatly strengthened by the recent finding that PrP was the protein that most strongly supported the binding of cells to soluble A42 oligomers in a screen of 225,000 murine clones (9). The authors also showed that although A42 oligomers suppressed long-term potentiation (LTP) in CA1 hippocampal neurons in mouse brain slices, LTP inhibitio...
Laser microsurgery and computer tracking of embryo structures indicate that the morphogenetic process of Drosophila dorsal closure requires only forces generated by the amnioserosa tissue. Forces generated by both “zipping” of epidermal tissue at the canthi corners and the resulting actomyosin purse string curvature are not necessary for closure.
A distinct conformational transition from the α-helix-rich cellular prion protein (PrPC) into its β-sheet-rich pathological isoform (PrPSc) is the hallmark of prion diseases, a group of fatal transmissible encephalopathies that includes spontaneous and acquired forms. Recently, a PrPSc-like intermediate form characterized by the formation of insoluble aggregates and protease-resistant PrP species termed insoluble PrPC (iPrPC) has been identified in uninfected mammalian brains and cultured neuronal cells, providing new insights into the molecular mechanism(s) of these diseases. Here, we explore the molecular characteristics of the spontaneously formed iPrPC in cultured neuroblastoma cells expressing wild-type or mutant human PrP linked to two familial prion diseases. We observed that although PrP mutation at either residue 183 from Thr to Ala (PrPT183A) or at residue 198 from Phe to Ser (PrPF198S) affects glycosylation at both N-linked glycosylation sites, the T183A mutation that results in intracellular retention significantly increased the formation of iPrPC. Moreover, while autophagy is increased in F198S cells, it was significantly decreased in T183A cells. Our results indicate that iPrPC may be formed more readily in an intracellular compartment and that a significant increase in PrPT183A aggregation may be attributable to the inhibition of autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.