Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, too small, or occur too rapidly to see clearly with existing tools. We crafted ultra-thin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at sub-second intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and complexity of living systems.
Graphical Abstract Highlights d Super-resolution live-cell imaging up to 266 fps at 97-nm resolution d Hitchhiking interactions among organelles remodel ER and mitochondrial networks d ER-mitochondrion contacts promote coalescence of mitochondrial membranes d Collision of late endosomes or lysosomes carried along microtubules split ER tubules
Apical constriction changes cell shapes, driving critical morphogenetic events including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both C. elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without significant shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex.
In centrosome-containing cells, microtubules nucleated at centrosomes are thought to play a major role in spindle assembly. In addition, microtubule formation at kinetochores has also been observed, most recently under physiological conditions in live cells. The relative contributions of microtubule formation at kinetochores and centrosomes to spindle assembly, and their molecular requirements, remain incompletely understood. Using mammalian cells released from nocodazole-induced disassembly, we observed microtubule formation at centrosomes and at Bub1-positive sites on chromosomes. Kinetochore-associated microtubules rapidly coalesced into pole-like structures in a dynein-dependent manner. Microinjection of excess importin-beta or depletion of the Ran-dependent spindle assembly factor, TPX2, blocked kinetochore-associated microtubule formation, enhanced centrosome-associated microtubule formation, but did not prevent chromosome capture by centrosomal microtubules. Depletion of the chromosome passenger protein, survivin, reduced microtubule formation at kinetochores in an MCAK-dependent manner. Microtubule formation in cells depleted of Bub1 or Nuf2 was indistinguishable from that in controls. Our data demonstrate that microtubule assembly at centrosomes and kinetochores is kinetically distinct and differentially regulated. The presence of microtubules at kinetochores provides a mechanism to reconcile the time required for spindle assembly in vivo with that observed in computer simulations of search and capture.
During mitosis, the motor molecule cytoplasmic dynein plays key direct and indirect roles in organizing microtubules (MTs) into a functional spindle. At this time, dynein is also recruited to kinetochores, but its role or roles at these organelles remain vague, partly because inhibiting dynein globally disrupts spindle assembly [1-4]. However, dynein can be selectively depleted from kinetochores by disruption of ZW10 [5], and recent studies with this approach conclude that kinetochore-associated dynein (KD) functions to silence the spindle-assembly checkpoint (SAC) [6]. Here we use dynein-antibody microinjection and the RNAi of ZW10 to explore the role of KD in chromosome behavior during mitosis in mammals. We find that depleting or inhibiting KD prevents the rapid poleward motion of attaching kinetochores but not kinetochore fiber (K fiber) formation. However, after kinetochores attach to the spindle, KD is required for stabilizing kinetochore MTs, which it probably does by generating tension on the kinetochore, and in its absence, chromosome congression is defective. Finally, depleting KD reduces the velocity of anaphase chromosome motion by approximately 40%, without affecting the rate of poleward MT flux. Thus, in addition to its role in silencing the SAC, KD is important for forming and stabilizing K fibers and in powering chromosome motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.