The immune system is composed of immune as well as non-immune cells. As this system is a well-established component of human papillomavirus- (HPV)-related carcinogenesis, high risk human papillomavirus (hrHPV) prevents its routes and mechanisms in order to cause the persistence of infection. Among these mechanisms are those originated from stromal cells, which include the cancer-associated fibroblasts (CAFs), the myeloid-derived suppressor cells (MDSCs) and the host infected cells themselves, i.e. the keratinocytes. These types of cells play central role since they modulate immune cells activities to create a prosperous milieu for cancer development, and the knowledge how such interactions occur are essential for prognostic assessment and development of preventive and therapeutic approaches. Nevertheless, the precise mechanisms are not completely understood, and this lack of knowledge precluded the development of entirely efficient immunotherapeutic strategies for HPV-associated tumors. As a result, an intense work for attaining how host immune response works, and developing of effective therapies has been applied in the last decade. Based on this, this review aims to discuss the major mechanisms of immune and non-immune cells modulated by hrHPV and the potential and existing immunotherapies involving such mechanisms in HPV-related cancers. It is noticed that the combination of immunotherapies has been demonstrated to be essential for obtaining better results, especially because the possibility of increasing the modulating capacity of the HPV-tumor microenvironment has been shown to be central in strengthening the host immune system.
Cervical cancer and cervical intraepithelial neoplasia (CIN) are well-known outcomes of a human papillomavirus (HPV) infection. Viral oncogenes expressions like E6, E7, and, recently recognized E5, lead to HPV-related malignant progression. Although HPV prevention by powerful vaccines against most frequent and oncogenic genotypes is feasible, current treatment against cervical neoplasia is distant from an ideal one. In addition, late diagnosis is commonly associated with a poor prognosis. On top of that, radiotherapy, chemotherapy, or surgery are less effective in high-grade lesions. Areas covered: Due to their peculiarities, HPV oncogenes represent an excellent target for cancer immunotherapy. Safety, efficacy, and potential immunogenicity are features achieved by DNA vaccines targeting HPV. The literature search has indicated that genetic immunotherapy is becoming a pharmacological tool and therapeutic option against cervical disease, as more and more DNA vaccines are reaching clinical trial phases. Expert commentary: Among some of the promising results, a phase II randomized trial showed a clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN patients. The concept of a synergic combination of anti-HPV DNA vaccines with radiotherapy, chemotherapy, sophisticated delivery methods, immunomodulators or immune adjuvants opens a new and interesting perspective in cervical malignancy treatment.
A number of recent studies have catalogued global gene expression patterns in a panel of normal, tumoral cervical tissues so that potential biomarkers can be identified. The qPCR has been one of the most widely used technologies for detecting these potential biomarkers. However, few studies have investigated a correct strategy for the normalization of data in qPCR assays for cervical tissues. The aim of this study was to validate reference genes in cervical tissues to ensure accurate quantification of mRNA and miRNA levels in cervical carcinogenesis. For this purpose, some issues for obtaining reliable qPCR data were evaluated such as the following: geNorm analysis with a set of samples which meet all of the cervical tissue conditions (Normal + CIN1 + CIN2 + CIN3 + Cancer); the use of individual Ct values versus pooled Ct values; and the use of a single (or multiple) reference genes to quantify mRNA and miRNA expression levels. Two different data sets were put on the geNorm to assess the expression stability of the candidate reference genes: the first dataset comprised the quantities of the individual Ct values; and the second dataset comprised the quantities of the pooled Ct values. Moreover, in this study, all the candidate reference genes were analyzed as a single “normalizer”. The normalization strategies were assessed by measuring p16INK4a and miR-203 transcripts in qPCR assays. We found that the use of pooled Ct values, can lead to a misinterpretation of the results, which suggests that the maintenance of inter-individual variability is a key factor in ensuring the reliability of the qPCR data. In addition, it should be stressed that a proper validation of the suitability of the reference genes is required for each experimental setting, since the indiscriminate use of a reference gene can also lead to discrepant results.
BackgroundThe MDM2 gene is the major negative regulator of p53, a tumor suppressor protein. Single nucleotide polymorphism in promoter region of MDM2 gene leads to increased expression resulting in higher levels of MDM2 protein. This event increases the attenuation of the p53 pathway. Polymorphisms in this gene can interfere in the regulation of cellular proliferation. We evaluated whether MDM2 SNP309 (rs2278744) associated or not with the use of oral contraceptive can heighten susceptibility to development of cervical lesions in women HPV infected.MethodsMDM2 SNP309 (rs2278744) was genotyped in a total of 287 patients using the PCR-RFLP technique. The results were analyzed by UNPHASED v.3.121 and SNPStats programs.ResultsThe three groups (SIL, LSIL and HSIL) showed no significant differences in either genotype or allelic frequencies for MDM2 polymorphisms, except when HSIL was compared with LSIL (p = 0.037; OR = 1.81). Furthermore, in the analysis of contraceptives, a significant association was found between the use of contraceptives and the MDM2 variant in the development of high-grade cervical lesions for the TG genotype (p = 0.019; OR = 2.21) when HSIL was compared with control. When HSIL was compared with LSIL (p = 0.006; OR = 2.27).ConclusionThe results of this study suggest that MDM2 SNP309 might be a good marker for assessing the progression of LSIL to HSIL. In addition, they also show that oral contraceptives alone, did not have any effect on the progression or development of cervical lesions. However, they may act synergistically with MDM2 SNP309 (rs2278744) and HPV infection in the development of cervical lesions.
Human papillomavirus (HPV) is responsible for high-grade cervical lesions and cervical cancer. The inflammation plays a key role in cervical cancer progression. In this context, studies propose an association between TNFα and IL10 SNPs and susceptibility to HPV infection. The present work aimed to investigate the possible association between IL10 and TNFα promoter polymorphisms and HPV infection in the cervical carcinogenesis risk in women from Brazil. A total of 654 samples was evaluated in this study. HPV detection was performed by PCR and HPV genotyping was performed by PCR and sequencing of positive MY09/11 PCR product. Genotyping of IL10 SNPs (rs1800871 and rs1800896) was performed by High Resolution Melt analysis. Genotyping of TNFα SNP (rs1800629) was performed by fluorogenic allele-specific probes. The distribution of TNF-308 (rs1800629) allelic (p = 0.03) and genotype (p = 0.03) frequencies and HPV-58 infection has showed a statistically significant difference between case and control groups for the assessed TNFα polymorphism. When it comes to TNFα (rs1800629) allelic and genotypic distribution and HPVs 18 and 31 infections, no statistically significant differences between case and control groups were observed for the studied TNFα polymorphism. The allelic and genotypic distribution of IL10-819 (rs1800871) and IL10-1082 (rs1800896) and HPV infection (HPVs 58, 18 and 31) has showed no statistically significant differences between case and control groups for the assessed IL10 polymorphisms. Furthermore, it was observed that haplotypes were associated with an increased cervical cancer risk in HPVs 16, 18 and 58-positive women. It was observed that women carrying the GTA and ATG haplotypes had 3.85 and 17.99-fold, respectively, increased cervical cancer susceptibility when infected by HPV-58. In women infected with HPV-16 and HPV-18, statistically significant results in women carrying the GTA and ATA haplotypes was observed. They had a 2.32 and 3.67-fold, respectively, increased cervical cancer susceptibility when infected by these two HPV types. The analysis of the haplotypes distribution in women infected with HPV-31 has showed no statistically significant results. Our study indicates that the association of genetic polymorphism in inflammation-related genes represents a risk to the susceptibility in the development of cervical cancer in women infected by HPVs 16, 18 and 58.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.