Biopolymeric chitosan is considered a promising encapsulating agent for textile applications due to its biocompatibility, lack of toxicity, antibacterial activity, high availability, and low cost. After cellulose, it is nature's most important organic compound. Also, chitosan has unique chemical properties due to its cationic charge in solution. Microencapsulation technologies play an important role in protecting the trapped material and in the durability of the effect, controlling the release rate. The application of chitosan microcapsules in textiles follows the current interest of industries in functionalization technologies that give different properties to products, such as aroma finish, insect repellency, antimicrobial activity, and thermal comfort. In this sense, methods of coacervation, ionic gelation, and LBL are presented for the production of chitosan-based microcapsules and methods of textile finishing that incorporate them are presented, bath exhaustion, filling, dry drying cure, spraying, immersion, and grafting chemical. Finally, current trends in the textile market are identified and guidance on future developments.
Pectinases can be used to remove impurities and hydrophobic material from cotton fibers by the degradation of pectic substances. The biochemical characterization and the evaluation of process parameters that influence the enzyme's activity are mandatory to optimize the industrial application. In the present study, a factorial experimental design was conducted to evaluate the activity of a commercial pectate lyase at different reaction conditions of temperature, pH, and nonionic surfactant concentration, aiming its application in bioscouring of textiles. The main effects of all three factors were found to be statistically significant. The second-order interactions between temperature and pH, and pH and surfactant concentration, were also important. Maximum activity on polygalacturonic acid was achieved at 60 °C, pH 9, and without surfactant. These results provided support for the subsequent bioscouring assays, resulting in a high level of cleanliness and good wettability of knitted cotton fabric at the lowest enzyme concentration (1 g/l), and could make textile processing more sustainable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.