During ex vivo growth as monolayer cultures, chondrocytes proliferate and undergo a process of de-differentiation. This process involves a change in morphology and a change from expression of chondrocyte-specific genes to that of genes that are normally expressed in fibroblasts. Transfer of the monolayer chondrocyte culture to three-dimensional culture systems induces the cells to re-acquire a chondrocyte-specific phenotype and produce a cartilaginous-like tissue in vitro. We investigated mechanisms involved in the control of the de-differentiation and re-differentiation process in vitro. De-differentiated chondrocytes re-acquired their chondrocyte-specific phenotype when cultured on poly-(2-hydroxyethyl methacrylate) (polyHEMA) as assayed by morphology, reverse transcriptase PCR of chondrocyte-specific mRNA, Western-blot analysis and chondrocyte-specific promoter activity. Essentially, full recovery of the chondrocyte-specific phenotype was observed when cells that had been cultured for 4 weeks on plastic were transferred to culture on polyHEMA. However, after subsequent passages on plastic, the phenotype recovery was incomplete or did not occur. The activity of a gene reporter construct containing the promoter and enhancer from the human type-II collagen gene (COL2A1) was modulated by the culture conditions, so that its transcriptional activity was repressed in monolayer cultures and rescued to some extent when the cells were switched to polyHEMA cultures. The binding of Sry-type high-mobility-group box (SOX) transcription factors to the enhancer region was modulated by the culture conditions, as were the mRNA levels for SOX9. A transfected human type-II collagen reporter construct was activated in de-differentiated cells by ectopic expression of SOX transcription factors. These results underscore the overt change in phenotype that occurs when chondrocytes are cultured as monolayers on tissue-culture plastic substrata.
During ex vivo growth as monolayer cultures, chondrocytes proliferate and undergo a process of de-differentiation. This process involves a change in morphology and a change from expression of chondrocyte-specific genes to that of genes that are normally expressed in fibroblasts. Transfer of the monolayer chondrocyte culture to three-dimensional culture systems induces the cells to re-acquire a chondrocyte-specific phenotype and produce a cartilaginous-like tissue in vitro. We investigated mechanisms involved in the control of the de-differentiation and re-differentiation process in vitro. De-differentiated chondrocytes re-acquired their chondrocyte-specific phenotype when cultured on poly-(2-hydroxyethyl methacrylate) (polyHEMA) as assayed by morphology, reverse transcriptase PCR of chondrocyte-specific mRNA, Western-blot analysis and chondrocyte-specific promoter activity. Essentially, full recovery of the chondrocyte-specific phenotype was observed when cells that had been cultured for 4 weeks on plastic were transferred to culture on polyHEMA. However, after subsequent passages on plastic, the phenotype recovery was incomplete or did not occur. The activity of a gene reporter construct containing the promoter and enhancer from the human type-II collagen gene (COL2A1) was modulated by the culture conditions, so that its transcriptional activity was repressed in monolayer cultures and rescued to some extent when the cells were switched to polyHEMA cultures. The binding of Sry-type high-mobility-group box (SOX) transcription factors to the enhancer region was modulated by the culture conditions, as were the mRNA levels for SOX9. A transfected human type-II collagen reporter construct was activated in de-differentiated cells by ectopic expression of SOX transcription factors. These results underscore the overt change in phenotype that occurs when chondrocytes are cultured as monolayers on tissue-culture plastic substrata.
To examine the possibility that cytokines produced in inflamed joint tissues may contribute to the loss of articular cartilage by causing inhibition of synthesis of cartilage-specific matrix macromolecules, we studied the effects of interferon gamma (IFN gamma) and tumour necrosis factor alpha (TNF alpha), alone and in combination, on the expression of the genes for types-II, -IX and -XI collagens in cultured human chondrocytes. Chondrocytes isolated from human fetal epiphyseal cartilage by sequential enzymic digestions were cultured in the presence of IFN gamma (30 pM), TNF alpha (15 pM) or a combination of suboptimal concentrations of both cytokines (1.5 pM IFN gamma plus 0.3 pM TNF alpha). IFN gamma caused a maximal decrease of 23.3-32.6% in the biosynthesis of collagen by chondrocytes. TNF alpha was a more potent inhibitor causing a 42.8-45.3% decrease at one-half the concentration of IFN gamma. A synergistic inhibitory effect of 58.2% was observed with the combination of 1.5 pM IFN gamma plus 0.3 pM TNF alpha. Electrophoretic analysis of the biosynthesized proteins showed a co-ordinate decrease in the production of the three cartilage-specific collagen types II, IX and XI. These effects were accompanied by parallel changes in the steady-state levels of their corresponding mRNAs. In vitro transcription assays showed that the collagen inhibitory effects of the cytokines occurred largely at the transcriptional level. Similar effects of the cytokines were observed on biosynthesis of types-II, -IX and -XI collagens and steady-state mRNA levels for type-II collagen by chondrocytes obtained from adult articular cartilage. These observations indicate that IFN gamma and TNF alpha can induce a synergistic inhibition of the synthesis of cartilage-specific collagens by fetal and adult human chondrocytes and suggest that these effects may contribute to the articular cartilage loss that occurs in inflammatory joint diseases.
We have detected DNA binding activity for a synthetic oligonucleotide containing an Sp1 consensus sequence in nuclear extracts from human chondrocytes. Changes in the levels of Sp1 oligonucleotide binding activity were examined in nuclear extracts from freshly isolated human chondrocytes, from chondrocytes that had been cultured under conditions that allowed the maintenance of a chondrocyte-specific phenotype on plastic dishes coated with the hydrogel poly(2-hydroxyethyl methacrylate), and from chondrocytes induced to dedifferentiate into fibroblast-like cells by passage in monolayer culture on plastic substrata. It was observed that Sp1 binding was 2-3-fold greater in nuclear extracts from dedifferentiated chondrocytes than in nuclear extracts from either freshly isolated chondrocytes or from cells cultured in suspension. The Sp1 binding activity was specific, since it was competed by unlabeled Sp1 but not by AP1 or AP2. The addition of a polyclonal antibody against Sp1 to nuclear extracts from freshly isolated chondrocytes or to extracts isolated from chondrocytes cultured in monolayer decreased the binding of Sp1 by ϳ85%. However, when the same experiment was carried out with nuclear extracts prepared from cells cultured on poly(2-hydroxyethyl methacrylate)-coated plates, only a very slight inhibition of Sp1 binding was observed. When fragments of the COL2A1 promoter containing putative Sp1 binding sites amplified by polymerase chain reaction were examined, it was found that the amounts of DNA-protein complex formed with nuclear extracts from dedifferentiated chondrocytes were 2-3-fold greater than the amounts formed with nuclear extracts from freshly isolated chondrocytes or from cells cultured in suspension. Quantitation of DNA binding activity by titration experiments demonstrated that nuclear extracts from fibroblast-like cells contained approximately 2-fold greater Sp-1 specific binding activity than nuclear extracts from chondrocytes. The direct role of Sp1 in type II collagen gene transcription was demonstrated by co-transfection experiments of COL2A1 promoter-CAT constructs in Drosophila Schneider line L2 cells that lack Sp1 homologs. This is the first demonstration of Sp1 binding activity in human chondrocytes and of differences in Sp1 DNA binding activity between differentiated and dedifferentiated chondrocytes.The extracellular matrix of articular cartilage consists of a large number of tissue-specific macromolecules including type II, IX, and XI collagens and the large aggregating proteoglycan, aggrecan (1). These extracellular matrix components are produced by chondrocytes, highly differentiated cells responsible for the maintenance of the structural integrity of the tissue through a precisely regulated balance between the synthesis and the degradation of these cartilage-specific macromolecules. The biosynthetic program of chondrocytes is determined by the highly conserved expression of a set of cartilage-specific genes (type II, IX, and XI collagens and the proteoglycan aggrecan), which is maint...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.