Objective. To identify the mediator responsible for the impact of chronic inflammation on skeletal development in children (bone loss, defective peak bone mass accrual, stunted growth), we evaluated the effects of chronic interleukin-6 (IL-6) overexpression on the skeletons of growing prepubertal mice.Methods. We studied IL-6-transgenic mice that had high circulating IL-6 levels since birth. Trabecular and cortical bone structure were analyzed by microcomputed tomography. Epiphyseal ossification, growth plates, and calvariae were studied by histology/ histomorphometry. Osteoclastogenesis, osteoblast function/differentiation, and the effects of IL-6 on bone cells were studied in vitro. Osteoblast gene expression was evaluated by reverse transcriptase-polymerase chain reaction. The mineral apposition rate was evaluated dynamically in cortical bone by in vivo double fluorescence labeling.Results. In prepubertal IL-6-transgenic mice, we observed osteopenia, with severe alterations in cortical and trabecular bone microarchitecture, as well as uncoupling of bone formation from resorption, with decreased osteoblast and increased osteoclast number and activity. Increased osteoclastogenesis and reduced osteoblast activity, secondary to decreased precursor proliferation and osteoblast function, were present. IL-6-transgenic mice also showed impaired development of growth plates and epiphyseal ossification centers. Intramembranous and endochondral ossification and the mineral apposition rate were markedly affected, showing the presence of defective ossification.Conclusion. Chronic overexpression of IL-6 alone induces a skeletal phenotype closely resembling growth and skeletal abnormalities observed in children with chronic inflammatory diseases, pointing to IL-6 as a pivotal mediator of the impact of chronic inflammation on postnatal skeletal development. We hypothesize that IL-6-modifying drugs may reduce skeletal defects and prevent the growth retardation associated with these diseases.
Among the biological activities of the endocannabinoid anandamide (N-arachidonoylethanolamine) (AEA), growing interest has been attracted by the regulation of mammalian fertility. Recently we have shown that treatment of mouse primary Sertoli cells with FSH enhances the activity of the AEA hydrolase [fatty acid amide hydrolase (FAAH)], though the molecular details were not elucidated. Here, we investigated whether FSH was also able to affect the enzymes that synthesize AEA (N-acyltransferase and N-acyl-phosphatidyl-ethanolamine-phospholipase D), the endogenous content of this endocannabinoid, and the level of the AEA-binding vanilloid receptor 1 (transient receptor potential channel vanilloid receptor subunit 1). We show that FSH enhanced FAAH activity (up to approximately 500% of the controls) and expression (up to approximately 300%), leading to a marked reduction (down to approximately 15%) of AEA content. However N-acyltransferase and N-acyl-phosphatidyl-ethanolamine-phospholipase D activity, and transient receptor potential channel vanilloid receptor subunit 1 binding were not affected. We also show that diacylglycerol lipase and monoacylglycerol lipase, which respectively synthesize and degrade 2-arachidonoyl-glycerol, were not regulated by FSH, neither was the membrane transport of this endocannabinoid. In addition, we show that FAAH stimulation by FSH was abrogated by inhibitors of protein kinase A (PKA) and cytochrome-P(450) aromatase, and was conversely mimicked by N,O'-dibutyryl cAMP and estrogen. Finally, we demonstrate that FSH protects Sertoli cells against the pro-apoptotic activity of AEA, through PKA and aromatase-dependent activation of FAAH. Altogether these data suggest that FAAH is the only target of FSH among the elements of the endocannabinoid system, and that its regulation by PKA and aromatase-dependent pathways impacts Sertoli cell proliferation.
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB1, CB2) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB1, CB2 and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB1 and CB2 receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
The transcription factor Sox4 is vital for fetal development, as Sox4–/– homozygotes die in utero. Sox4 mRNA is expressed in the early embryonic growth plate and is regulated by parathyroid hormone, but its function in bone modeling/remodeling is unknown. We report that Sox4+/– mice exhibit significantly lower bone mass (by dual-energy X-ray absorptiometry) from an early age, and fail to obtain the peak bone mass of wild-type (WT) animals. Microcomputed tomography (μCT), histomorphometry and biomechanical testing of Sox4+/– bones show reduced trabecular and cortical thickness, growth plate width, ultimate force and stiffness compared with WT. Bone formation rate (BFR) in 3-month-old Sox4+/– mice is 64% lower than in WT. Primary calvarial osteoblasts from Sox4+/– mice demonstrate markedly inhibited proliferation, differentiation and mineralization. In these cultures, osterix (Osx) and osteocalcin (OCN) mRNA expression was reduced, whereas Runx2 mRNA was unaffected. No functional defects were found in osteoclasts. Silencing of Sox4 by siRNA in WT osteoblasts replicated the defects observed in Sox4+/– cells. We demonstrate inhibited formation and altered microarchitecture of bone in Sox4+/– mice versus WT, without apparent defects in bone resorption. Our results implicate the transcription factor Sox4 in regulation of bone formation, by acting upstream of Osx and independent of Runx2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.