VALUE is an open European collaboration to intercompare downscaling approaches for climate change research, focusing on different validation aspects (marginal, temporal, extremes, spatial, process‐based, etc.). Here we describe the participating methods and first results from the first experiment, using “perfect” reanalysis (and reanalysis‐driven regional climate model (RCM)) predictors to assess the intrinsic performance of the methods for downscaling precipitation and temperatures over a set of 86 stations representative of the main climatic regions in Europe. This study constitutes the largest and most comprehensive to date intercomparison of statistical downscaling methods, covering the three common downscaling approaches (perfect prognosis, model output statistics—including bias correction—and weather generators) with a total of over 50 downscaling methods representative of the most common techniques. Overall, most of the downscaling methods greatly improve (reanalysis or RCM) raw model biases and no approach or technique seems to be superior in general, because there is a large method‐to‐method variability. The main factors most influencing the results are the seasonal calibration of the methods (e.g., using a moving window) and their stochastic nature. The particular predictors used also play an important role in cases where the comparison was possible, both for the validation results and for the strength of the predictor–predictand link, indicating the local variability explained. However, the present study cannot give a conclusive assessment of the skill of the methods to simulate regional future climates, and further experiments will be soon performed in the framework of the EURO‐CORDEX initiative (where VALUE activities have merged and follow on). Finally, research transparency and reproducibility has been a major concern and substantive steps have been taken. In particular, the necessary data to run the experiments are provided at http://www.value-cost.eu/data and data and validation results are available from the VALUE validation portal for further investigation: http://www.value-cost.eu/validationportal.
Credible information about the properties and changes of extreme events on the regional and local scales is of prime importance in the context of future climate change. Within the EU‐COST Action VALUE a comprehensive validation framework for downscaling methods has been developed. Here we present validation results for extremes of temperature and precipitation from the perfect predictor experiment that uses reanalysis‐based predictors to isolate downscaling skill. The raw reanalysis output reveals that there is mostly a large bias with respect to the extreme index values at the considered stations across Europe, clearly pointing to the necessity of downscaling. The performance of the downscaling methods is closely linked to their specific structure and setup. All methods using parametric distributions require non‐standard distributions to correctly represent marginal aspects of extremes. Also, the performance is much improved by explicitly including a seasonal component, particularly in case of precipitation. With respect to the marginal aspects of extremes the best performance is found for model output statistics (MOS), weather generators (WGs) as well as perfect prognosis (PP) methods using analogues. Spell‐length‐related extremes of temperature are best assessed by MOS and WGs, spell‐length‐related extremes of precipitation by MOS and PP methods using analogues. The skill of PP methods with transfer functions varies strongly across the methods and depends on the extreme index, region and season considered.
Temporal variability is an important feature of climate, comprising systematic variations such as the annual cycle, as well as residual temporal variations such as short‐term variations, spells and variability from interannual to long‐term trends. The EU‐COST Action VALUE developed a comprehensive framework to evaluate downscaling methods. Here we present the evaluation of the perfect predictor experiment for temporal variability. Overall, the behaviour of the different approaches turned out to be as expected from their structure and implementation. The chosen regional climate model adds value to reanalysis data for most considered aspects, for all seasons and for both temperature and precipitation. Bias correction methods do not directly modify temporal variability apart from the annual cycle. However, wet day corrections substantially improve transition probabilities and spell length distributions, whereas interannual variability is in some cases deteriorated by quantile mapping. The performance of perfect prognosis (PP) statistical downscaling methods varies strongly from aspect to aspect and method to method, and depends strongly on the predictor choice. Unconditional weather generators tend to perform well for the aspects they have been calibrated for, but underrepresent long spells and interannual variability. Long‐term temperature trends of the driving model are essentially unchanged by bias correction methods. If precipitation trends are not well simulated by the driving model, bias correction further deteriorates these trends. The performance of PP methods to simulate trends depends strongly on the chosen predictors.
This paper presents a validation study for a high-resolution version of the Regional Climate Model version 3 (RegCM3) over the Carpathian basin and its surroundings. The horizontal grid spacing of the model is 10 km—the highest reached by RegCM3. The ability of the model to capture temporal and spatial variability of temperature and precipitation over the region of interest is evaluated using metrics spanning a wide range of temporal (daily to climatology) and spatial (inner domain average to local) scales against different observational datasets. The simulated period is 1961–90. RegCM3 shows small temperature biases but a general overestimation of precipitation, especially in winter; although, this overestimate may be artificially enhanced by uncertainties in observations. The precipitation bias over the Hungarian territory, the authors’ main area of interest, is mostly less than 20%. The model captures well the observed late twentieth-century decadal-to-interannual and interseasonal variability. On short time scales, simulated daily temperature and precipitation show a high correlation with observations, with a correlation coefficient of 0.9 for temperature and 0.6 for precipitation. Comparison with two Hungarian station time series shows that the model performance does not degrade when going to the 10-km gridpoint scale. Finally, the model reproduces the spatial distribution of dry and wet spells over the region. Overall, it is assessed that this high-resolution version of RegCM3 is of sufficiently good quality to perform climate change experiments over the Carpathian region—and, in particular, the Hungarian territory—for application to impact and adaptation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.