Background and purpose: High-risk prostate cancer patients are frequently treated with external-beam radiotherapy (EBRT). Of all patients receiving EBRT, 15-35% will experience biochemical recurrence (BCR) within five years. Magnetic resonance imaging (MRI) is commonly acquired as part of the diagnostic procedure and imaging-derived features have shown promise in tumour characterisation and biochemical recurrence prediction. We investigated the value of imaging features extracted from pre-treatment T2w anatomical MRI to predict five year biochemical recurrence in high-risk patients treated with EBRT. Materials and methods: In a cohort of 120 high-risk patients, imaging features were extracted from the wholeprostate and a margin surrounding it. Intensity, shape and textural features were extracted from the original and filtered T2w-MRI scans. The minimum-redundancy maximum-relevance algorithm was used for feature selection. Random forest and logistic regression classifiers were used in our experiments. The performance of a logistic regression model using the patient's clinical features was also investigated. To assess the prediction accuracy we used stratified 10-fold cross validation and receiver operating characteristic analysis, quantified by the area under the curve (AUC). Results: A logistic regression model built using whole-prostate imaging features obtained an AUC of 0.63 in the prediction of BCR, outperforming a model solely based on clinical variables (AUC = 0.51). Combining imaging and clinical features did not outperform the accuracy of imaging alone. Conclusions: These results illustrate the potential of imaging features alone to distinguish patients with an increased risk of recurrence, even in a clinically homogeneous cohort.
Background and purpose: Segmentation of oropharyngeal squamous cell carcinoma (OPSCC) is needed for radiotherapy planning. We aimed to segment the primary tumor for OPSCC on MRI using convolutional neural networks (CNNs). We investigated the effect of multiple MRI sequences as input and we proposed a semiautomatic approach for tumor segmentation that is expected to save time in the clinic. Materials and methods: We included 171 OPSCC patients retrospectively from 2010 until 2015. For all patients the following MRI sequences were available: T1-weighted, T2-weighted and 3D T1-weighted after gadolinium injection. We trained a 3D UNet using the entire images and images with reduced context, considering only information within clipboxes around the tumor. We compared the performance using different combinations of MRI sequences as input. Finally, a semi-automatic approach by two human observers defining clipboxes around the tumor was tested. Segmentation performance was measured with Sørensen-Dice coefficient (Dice), 95th Hausdorff distance (HD) and Mean Surface Distance (MSD). Results: The 3D UNet trained with full context and all sequences as input yielded a median Dice of 0.55, HD of 8.7 mm and MSD of 2.7 mm. Combining all MRI sequences was better than using single sequences. The semiautomatic approach with all sequences as input yielded significantly better performance (p < 0.001): a median Dice of 0.74, HD of 4.6 mm and MSD of 1.2 mm.
Conclusion:Reducing the amount of context around the tumor and combining multiple MRI sequences improved the segmentation performance. A semi-automatic approach was accurate and clinically feasible.
Purpose Predicting early local tumor progression after thermal ablation treatment for colorectal liver metastases patients is critical for the decision of subsequent follow-up and treatment. Radiomics features derived from medical images show great potential for prediction and prognosis. The aim is to develop and validate a machine learning radiomics model to predict local tumor progression based on the pre-ablation CT scan of colorectal liver metastases patients. Materials and Methods Ninety patients with colorectal liver metastases (140 lesions) treated by ablation were included in the study and were randomly divided into a training (n = 63 patients/n = 94 lesions) and validation (n = 27 patients/n = 46 lesions) cohort. After manual lesion volume segmentation and preprocessing, 1593 radiomics features were extracted for each lesion. Three machine learning survival models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features to predict local tumor progression free survival. Feature reduction and machine learning modeling were performed and optimized with sequential model-based optimization. Results Median follow-up was 24 months (range 6-115). Thirty-one (22%) lesions developed local tumor progression. The concordance index in the validation set to predict local tumor progression free survival was 0.78 (95% confidence interval [CI]: 0.77-0.79) for the radiomics model, 0.56 (95%CI: 0.55-0.57) for the clinical model and 0.79 (95%CI: 0.78-0.80) for the combined model. Conclusion A machine learning-based radiomics analysis of routine clinical CT imaging pre-ablation could act as a valuable biomarker model to predict local tumor progression with curative intent for colorectal liver metastases patients. Keywords Tomography Á X-ray computed Á Colorectal cancer Á Neoplasm metastasis Á Liver neoplasms Á Liver ablation Á Machine learning Abbreviations CRC Colorectal cancer CRLM Colorectal liver metastases ML Machine learning CI Confidence interval LTP Local tumor progression RFA Radiofrequency ablation MWA Microwave ablation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.