The chemical composition of bee pollens differs greatly and depends primarily on the botanical origin of the product. Therefore, it is a crucially important task to discriminate pollens of different plant species. In our work, we aim to determine the applicability of microscopic pollen analysis, spectral colour measurement, sensory, NIR spectroscopy, e-nose and e-tongue methods for the classification of bee pollen of five different botanical origins. Chemometric methods (PCA, LDA) were used to classify bee pollen loads by analysing the statistical pattern of the samples and to determine the independent and combined effects of the above-mentioned methods. The results of the microscopic analysis identified 100% of sunflower, red clover, rapeseed and two polyfloral pollens mainly containing lakeshore bulrush and spiny plumeless thistle. The colour profiles of the samples were different for the five different samples. E-nose and NIR provided 100% classification accuracy, while e-tongue > 94% classification accuracy for the botanical origin identification using LDA. Partial least square regression (PLS) results built to regress on the sensory and spectral colour attributes using the fused data of NIR spectroscopy, e-nose and e-tongue showed higher than 0.8 R2 during the validation except for one attribute, which was much higher compared to the independent models built for instruments.
Pollen is a source of nutrients for honeybees (Apis mellifera L.) and suitable for human consumption as well. In our research, a multiresidue method for pesticide determination was developed and validated for the bee pollen matrix. 247 components met the validation criteria for limit of detection, limit of quantification, linearity, and interday repeatability. Average recoveries varied between 70 and 120% except for 14 analytes, which were corrected during on-going validation. The matrix effect was strong for certain analytes, which required the use of matrix-matched calibration. The pesticide residue profiles of 21 pollen samples of different botanical origins were identified by the developed method. The most common active substances were chlorpyrifos, thiacloprid, and acetamiprid. Some products contained pesticides that are already banned. According to our estimates, the tested samples do not pose an acute risk on honeybees, although the combination of pesticides may cause synergistic toxicity.
Bee pollens are potential functional food ingredients as they contain essential nutrients and a wide range of bioactive compounds. The aim of this study was to investigate the effects of enrichment with monofloral bee pollens on the nutritional properties, techno-functional parameters, sensory profile, and consumer preference of biscuits. Biscuits were prepared according to the AACC-approved method by substituting wheat flour with pollens of rapeseed (Brassica napus L.), phacelia (Phacelia tanacetifolia Benth.) and sunflower (Helianthus annuus L.) at 2%, 5% and 10% levels. The macronutrient composition of the biscuits was determined: crude protein content (Kjeldahl method), crude fat content (Soxhlet extraction), ash content (carbonization), moisture content (drying), carbohydrate content (formula). Their total phenolic content (TPC) and in vitro antioxidant capacity (FRAP, TEAC, DPPH) were determined spectrophotometrically. The colour of the biscuits was measured using a tristimulus-based instrument, and their texture was characterized by using a texture analyser. Sensory profile of biscuits was determined by qualitative descriptive analysis (QDA). The consumer acceptance and purchase intention of the biscuits were also evaluated, based on the responses of 100 consumers. Additionally, an external preference map was created to illustrate the relationship between consumer preference and the sensory profile of the biscuits, and penalty analysis was conducted to identify directions for product development. Phacelia pollen appeared to be the most effective for improving the nutritional quality of biscuits. The addition of phacelia pollen at the 10% substitution level increased the protein content and TPC of the control biscuit by 21% and 145%, respectively. Significant changes (p < 0.05) were also observed regarding the colour and texture of biscuits. The results of the QDA revealed that biscuits containing pollens of different botanical sources have heterogeneous sensory attributes. The biscuit containing sunflower pollen at the 2% substitution level was preferred the most (overall liking = 6.9 ± 1.6), and purchase intentions were also the highest for this product. Based on the results of the present study, it is recommended to use sunflower pollen for developing pollen-enriched foods in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.