In this paper, the semi-real time electrochemical monitoring method using a screen-printed electrode, which employs reverse transcription loop-mediated isothermal amplification (RT-LAMP) for influenza virus RNA, is presented. The amplified DNA combined with methylene blue (MB), which was used as an electroactive DNA intercalator, and the electrochemical signal was monitored using square wave voltammetry in the presence of RT-LAMP reagent components. MB molecules binding to amplified DNA caused the reduction of the peak current due to the slow diffusion of MB-amplified DNA complex to the electrode surface. We successfully monitored the amplification process of DNA on the basis of RT-LAMP by measuring and analyzing the electrochemical signal of MB with only one screen-printed electrode that connected with a USB powered portable potentiostat. The peak height of the current was related to the extent of amplification of DNA and the amount of input RNA. Since laborious probe immobilization is not required and both the amplification and the monitoring are possible in a single tube, our method does not suffer from potential cross-contamination. Furthermore, our method provides a new rote for the development of electrochemical hand held biosensors.
Rapid and definitive diagnosis is critical to the prevention of the spread of endemic human pathogenic viruses. Detection of variant specific genes by reverse transcription polymerase chain reaction (RT-PCR) has become a routine diagnostic test for accurate subtyping of RNA viruses, such as influenza. In this paper, we demonstrate the use of a continuous-flow polydimethylsiloxane (PDMS) microfluidic RT-PCR chip and disposable electrical printed (DEP) chips for rapid amplification and sensing of new influenza (AH1pdm) virus of swine-origin. The RT-PCR chip consisted of four zones: RT reaction zone, initial denaturation zone, thermal cycle zone for PCR (2-step PCR) and pressurizing-channel zone for preventing air-bubble formation. In order to measure electrochemical signals, methylene blue (MB), an electro-active DNA intercalator, was added to the RT-PCR mixture. The RT-PCR was completed within 15 min which was the total flow-through time from the inlet to the outlet, and the reduction signals from amplifications could be detected quickly on the DEP chip. The MB reduction current on the DEP chip with the amplicon significantly reduced compared to non-amplified controls. This microfluidic platform for rapid RT-PCR and the DEP chip for quick electrochemical sensing are suitable for integration, and have the potential to be a portable system for diagnostic tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.