Bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-beta (TGF-) superfamily, regulates a variety of cell fates and functions. At present, the molecular mechanism by which BMP2 induces apoptosis has not been fully elucidated. Here we propose a BMP2 signaling pathway that mediates apoptosis in mouse hybridoma MH60 cells whose growth is interleukin-6 (IL-6)-dependent. BMP2 dose-dependently induces apoptosis in MH60 cells even in the presence of IL-6. BMP2 has no inhibitory effect on the IL-6-induced tyrosine phosphorylation of STAT3, and the bcl-2 gene expression which is known to be regulated by STAT3, suggesting that BMP2-induced apoptosis is not attributed to alteration of the IL-6-mediated bcl-2 pathway. We demonstrate that BMP2 induces activation of TGF--activated kinase (TAK1) and subsequent phosphorylation of p38 stress-activated protein kinase. In addition, forced expression of kinase-negative TAK1 in MH60 cells blocks BMP2-induced apoptosis. These results indicate that BMP2-induced apoptosis is mediated through the TAK1-p38 pathway in MH60 cells. We also show that MH60-derived transfectants expressing Smad6 are resistant to the apoptotic signal of BMP2. Interestingly, this ectopic expression of Smad6 blocks BMP2-induced TAK1 activation and p38 phosphorylation. Moreover, Smad6 can directly bind to TAK1. These findings suggest that Smad6 is likely to function as a negative regulator of the TAK1 pathway in the BMP2 signaling, in addition to the previously reported Smad pathway.
Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) function in Xenopus, Drosophila, and Caenorhabditis elegans development. Here we report that serine phosphorylation of STAT3 induced by TAK1-NLK cascade is essential for TGF-β-mediated mesoderm induction in Xenopus embryo. Depletion of TAK1, NLK, or STAT3 blocks TGF-β-mediated mesoderm induction. Coexpression of NLK and STAT3 induces mesoderm by a mechanism that requires serine phosphorylation of STAT3. Activin activates NLK, which in turn directly phosphorylates STAT3. Moreover, depletion of either TAK1 or NLK inhibits endogenous serine phosphorylation of STAT3. These results provide the first evidence that TAK1-NLK-STAT3 cascade participates in TGF-β-mediated mesoderm induction.
The solubilization and partial purification of cholinephosphotransferase (CDPcholine:1,2-diacylglycerol cholinephosphotransferase, EC 2.7.8.2) from rat liver microsomes were examined in the presence of ionic (sodium deoxycholate), nonionic (Triton X-100, n-octylglycoside), or zwitter ionic (CHAPS) detergents. Among the four detergents tested, only sodium deoxycholate was found to be an efficient solubilizer of cholinephosphotransferase activity from microsomal membranes, whereas the other three detergents caused irreversible inactivation of the enzyme at the solubilization step. Addition of phospholipids at the solubilization step, or after solubilization of the membrane proteins, could not preserve or reconstitute activity to any extent. The sodium deoxycholate-solubilized activity was partially purified by gel permeation chromatography (Superose 12HR). The partially purified preparation appeared to consist of a large aggregate containing phospholipids; further dissociation of the protein-phospholipid complex caused complete inactivation of the enzyme. The partially purified cholinephosphotransferase showed a specific activity of 100-130 nmol/min/mg protein, which is the highest activity reported to date from any tissue source; this amounts to a 4-fold enrichment of cholinephosphotransferase activity from the original KCl-washed rat liver microsomes. Ethanolaminephosphotransferase (CDPethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase, EC 2.7.8.1) activity was copurified and 6-fold enriched with a total recovery of 60%. During the purification of cholinephosphotransferase activity, a putative endogenous inhibitor of cholinephosphotransferase was also solubilized and was isolated from the microsomal membranes. This heat-labile, nondialyzable inhibitor was shown to act specifically on cholinephosphotransferase and not on ethanolaminephosphotransferase. Further characterization of the inhibitory activity revealed that it may act at the binding step of the cholinephosphotransferase to its lipid substrate, diacylglycerol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.