A structural study was carried out on a fucoidan isolated from the brown seaweed Cladosiphon okamuranus. The polysaccharide contained fucose, glucuronic acid and sulfate in a molar ratio of about 6.1 : 1.0 : 2.9. The results of Smith degradation showed that this polysaccharide has a linear backbone of 1-->3-linked alpha-fucopyranose with a half sulfate substitution at the 4-positions, and a portion of the fucose residues was O-acetylated. The data obtained from partial acid hydrolysis, a methylation analysis and NMR spectra indicated that the alpha-glucuronic acid residue is linked to the 2-positions of the fucose residues, which were not substituted by a sulfate group. These results indicated that the average structure of this fucoidan is as follows: -[(-->3Fuc-4(+/-OSO3-)alpha1-)5-->3[GlcA alpha1-->2]Fuc alpha1-]n-. (Half of each fucose residue was sulfated. One O-acetyl ester was present in every 6 fucose residues.)
To elucidate the anti-ulcer potential of Cladosiphon fucoidan, anti-peptic activity, bFGF stabilizing activity and inflammatory properties of this and related substances were investigated. Anti-peptic activity was observed with this and other sulfated polysaccharides such as dextran sulfate, carrageenan, and Fucus fucoidan. However, non-sulfated polysaccharides such as mannan and dextran did not exert the anti-peptic activity. The loss of bFGF bioactivity was prevented by all sulfated polysaccharides tested except chondroitin sulfate, at pH 7.4 and at pH 4.0. At pH 2.0, only heparin protected the bFGF activity. The generation of superoxide by macrophages and PMNs was stimulated by dextran sulfate, carrageenan, and Fucus fucoidan, whereas Cladosiphon fucoidan, heparin and chondroitin did not. Dextran sulfate, carrageenan, and Fucus fucoidan also stimulated the secretion of TNFalpha from macrophages, while Cladosiphon fucoidan did not. Thus, Cladosiphon fucoidan is a sulfated polysaccharide without inflammatory action. These results suggest that Cladosiphon fucoidan is a safe substance with potential for gastric protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.