Interactive learning environments facilitate learning by providing hints to fill the gaps in the understanding of a concept. Studies suggest that hints are not used optimally by learners. Either they are used unnecessarily or not used at all. It has been shown that learning outcomes can be improved by providing hints when needed. An effective hinttaking prediction model can be used by a learning environment to make adaptive decisions on whether to withhold or provide hints. Past work on student behavior modeling has focused extensively on the task of modeling a learner's state of knowledge over time, referred to as knowledge tracing. The other aspects of a learner's behavior such as tendency to use hints has garnered limited attention. Past knowledge tracing models either ignore the questions where a hint was taken or label hints taken as an incorrect response. We propose a multi-task memory-augmented deep learning model to jointly predict the hint-taking and the knowledge tracing task. The model incorporates the effect of past responses as well as hints taken on both the tasks. We apply the model on two datasets -ASSISTments 2009-10 skill builder dataset and Junyi Academy Math Practicing Log. The results show that deep learning models efficiently leverage the sequential information present in a learner's responses. The proposed model significantly out-performs the past work on hint prediction by at least 12% points. Moreover, we demonstrate that jointly modeling the two tasks improves performance consistently across the tasks and the datasets, albeit by a small amount.
Recent research in tomographic reconstruction is motivated by the need to efficiently recover detailed anatomy from limited measurements. One of the ways to compensate for the increasingly sparse sets of measurements is to exploit the information from templates, i.e., prior data available in the form of already reconstructed, structurally similar images. Towards this, previous work has exploited using a set of global and patch based dictionary priors. In this paper, we propose a global prior to improve both the speed and quality of tomographic reconstruction within a Compressive Sensing framework.We choose a set of potential representative 2D images referred to as templates, to build an eigenspace; this is subsequently used to guide the iterative reconstruction of a similar slice from sparse acquisition data. Our experiments across a diverse range of datasets show that reconstruction using an appropriate global prior, apart from being faster, gives a much lower reconstruction error when compared to the state of the art.
Scene graphs are a powerful structured representation of the underlying content of images, and embeddings derived from them have been shown to be useful in multiple downstream tasks. In this work, we employ a graph convolutional network to exploit structure in scene graphs and produce image embeddings useful for semantic image retrieval. Different from classification-centric supervision traditionally available for learning image representations, we address the task of learning from relative similarity labels in a ranking context. Rooted within the contrastive learning paradigm, we propose a novel loss function that operates on pairs of similar and dissimilar images and imposes relative ordering between them in embedding space. We demonstrate that this Ranking loss, coupled with an intuitive triple sampling strategy, leads to robust representations that outperform well-known contrastive losses on the retrieval task. In addition, we provide qualitative evidence of how retrieved results that utilize structured scene information capture the global context of the scene, different from visual similarity search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.