We consider the growth factor (GF) signaling pathways, widely studied in the context of cancer. Interactions between different pathway components are modeled using Boolean logic gates. All possible single malfunctions in the resulting circuit are enumerated and responses of the different malfunctioning circuits to a 'test' input are used to group the malfunctions into classes. Effects of different drugs, targeting different parts of the Boolean circuit, are taken into account in deciding drug efficacy, thereby mapping each malfunction to an appropriate set of drugs.
This paper presents a general theoretical framework for generating Boolean networks whose state transitions realize a set of given biological pathways or minor variations thereof. This ill-posed inverse problem, which is of crucial importance across practically all areas of biology, is solved by using Karnaugh maps which are classical tools for digital system design. It is shown that the incorporation of prior knowledge, presented in the form of biological pathways, can bring about a dramatic reduction in the cardinality of the network search space. Constraining the connectivity of the network, the number and relative importance of the attractors, and concordance with observed time-course data are additional factors that can be used to further reduce the cardinality of the search space. The networks produced by the approaches developed here should facilitate the understanding of multivariate biological phenomena and the subsequent design of intervention approaches that are more likely to be successful in practice. As an example, the results of this paper are applied to the widely studied p53 pathway and it is shown that the resulting network exhibits dynamic behavior consistent with experimental observations from the published literature.
BackgroundOxidative stress is a consequence of normal and abnormal cellular metabolism and is linked to the development of human diseases. The effective functioning of the pathway responding to oxidative stress protects the cellular DNA against oxidative damage; conversely the failure of the oxidative stress response mechanism can induce aberrant cellular behavior leading to diseases such as neurodegenerative disorders and cancer. Thus, understanding the normal signaling present in oxidative stress response pathways and determining possible signaling alterations leading to disease could provide us with useful pointers for therapeutic purposes. Using knowledge of oxidative stress response pathways from the literature, we developed a Boolean network model whose simulated behavior is consistent with earlier experimental observations from the literature. Concatenating the oxidative stress response pathways with the PI3-Kinase-Akt pathway, the oxidative stress is linked to the phenotype of apoptosis, once again through a Boolean network model. Furthermore, we present an approach for pinpointing possible fault locations by using temporal variations in the oxidative stress input and observing the resulting deviations in the apoptotic signature from the normally predicted pathway. Such an approach could potentially form the basis for designing more effective combination therapies against complex diseases such as cancer.ResultsIn this paper, we have developed a Boolean network model for the oxidative stress response. This model was developed based on pathway information from the current literature pertaining to oxidative stress. Where applicable, the behaviour predicted by the model is in agreement with experimental observations from the published literature. We have also linked the oxidative stress response to the phenomenon of apoptosis via the PI3k/Akt pathway.ConclusionsIt is our hope that some of the additional predictions here, such as those pertaining to the oscillatory behaviour of certain genes in the presence of oxidative stress, will be experimentally validated in the near future. Of course, it should be pointed out that the theoretical procedure presented here for pinpointing fault locations in a biological network with feedback will need to be further simplified before it can be even considered for practical biological validation.
Bacterial species are known to show chemotaxis, i.e., the directed motions in the presence of certain chemicals, whereas the motion is random in the absence of those chemicals. The bacteria modulate their run time to induce chemotactic drift towards the attractant chemicals and away from the repellent chemicals. However, the existing theoretical knowledge does not exhibit a proper match with experimental validation, and hence there is a need for developing alternate models and validating experimentally. In this paper a more robust theoretical model is proposed to investigate chemotactic drift of peritrichous Escherichia coli under an exponential nutrient gradient. An exponential gradient is used to understand the steady state behavior of drift because of the logarithmic functionality of the chemosensory receptors. Our theoretical estimations are validated through the experimentation and simulation results. Thus, the developed model successfully delineates the run time, run trajectory, and drift velocity as measured from the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.