Diverse urban air pollution sources contribute to spatially variable atmospheric concentrations, with important public health implications. Mobile monitoring shows promise for understanding spatial pollutant patterns, yet it is unclear whether uncertainties associated with temporally sparse sampling and instrument performance limit our ability to identify locations of elevated pollution. To address this question, we analyze 9 months of repeated weekday daytime on-road mobile measurements of black carbon (BC), particle number (PN), and nitrogen oxide (NO, NO 2 ) concentrations within 24 census tracts across Houston, Texas. We quantify persistently elevated, intermittent, and extreme concentration behaviors at 50 m road segments on surface streets and 90 m segments on highways relative to median statistics across the entire sampling domain. We find elevated concentrations above uncertainty levels (±40%) within portions of every census tract, with median concentration increases ranging from 2 to 3× for NO 2 , and >9× for NO. In contrast, PN exhibits elevated concentrations of 1.5−2× the domainwide median and distinct spatial patterns relative to other pollutants. Co-located elevated concentrations of primary combustion tracers (BC and NO x ) near 30% of metal recycling and concrete batch plant facilities within our sampled census tracts are comparable to those measured within 200 m of highways. Our results demonstrate how extensive mobile monitoring across multiple census tracts can quantitatively characterize urban air pollution source patterns and are applicable to developing effective source mitigation policies.
Given the serious adverse health effects associated with many pollutants, and the inequitable distribution of these effects between socioeconomic groups, air pollution is often a focus of environmental justice (EJ) research. However, EJ analyses that aim to illuminate whether and how air pollution hazards are inequitably distributed may present a unique set of requirements for estimating pollutant concentrations compared to other air quality applications. Here, we perform a scoping review of the range of data analytic and modeling methods applied in past studies of air pollution and environmental injustice and develop a guidance framework for selecting between them given the purpose of analysis, users, and resources available. We include proxy, monitor-based, statistical, and process-based methods. Upon critically synthesizing the literature, we identify four main dimensions to inform method selection: accuracy, interpretability, spatiotemporal features of the method, and usability of the method. We illustrate the guidance framework with case studies from the literature. Future research in this area includes an exploration of increasing data availability, advanced statistical methods, and the importance of science-based policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.