In the present work, titanium dioxide (TiO2) nanoparticles (NP’s) were prepared using sol-gel process from Titanium Tetrachloride (TiCl4) as a precursor with calcinations at two temperatures (500 and 900) °C. The effect of calcinations temperatures on the structural, optical, morphological and Root Mean Square (roughness) properties were investigated by means of Scanning Electron Microscopy, X-ray Diffraction (XRD), and Atomic Force Microscopy (AFM). Bacterial inactivation was evaluated using TiO2-coated Petri dishes. A thin layer of photocatalytic TiO2 powder was deposited on glass substrate in order to investigate the self-cleaning effect of TiO2 nanoparticles in indoor and outdoor applications. Ultra-hydrophilicity was assessed by measuring the contact angle and it evaluated photolysis properties through the degradation of potassium permanganate (KMnO4) under direct sunlight. XRD analysis indicated that the structure of TiO2 was anatase at 500 °C and rutile at 900 °C calcination temperatures. As the calcination temperature increases, the crystallinity is improved and the crystallite size becomes larger. Coated films of TiO2 made the has permeability, low water contact angle and good optical activity. These are properties essential for the application of the surface of the self-cleaning. The final results illustrate that titanium dioxide can be used in the build materials to produce coated surfaces in order to minimize air pollutants that are placed in microbiologically sensitive circumference like hospitals and the food factory.
This review summarizes the work principles used for polymer membrane in water treatment. The performance of traditional polymeric films was improved after adding some nanometals such as nano silver AgNPs and gold AuNP’s and nanomaterials, especially the use of titanium dioxide, carbon nanotube and zinc oxide (TiO2, CNT, ZnO, …etc.), which is available, cheap and environmentally friendly. The theoretical aspects of the polymeric films coated with nanomaterials and the use of the advanced water treatment, removal of microorganisms, chemical compounds, heavy metals, and others are presented. The use of nanomaterials has helped to enhance the water resistance ability, suppress the accumulation of pollutants and contamination, enhance the reject efficiency and improve mechanical properties and thermal stability. Thus, the goal of the present work is to provide updated information regarding the membranes of the new nanocomposites (NC) and their contribution to water treatment applications.
A novel membrane bioreactor system utilizes Multi-Walled Carbon Nanotubes (MWCNTs) coated polyurethane sponge (PUs), an electrical field, and a nanocomposite membrane has been successfully designed to diminish membrane with fouling caused by activated sludge. The classical phase inversion was harnessed to prepare Zinc Oxide/Polyphenylsulfone (ZnO/PPSU) nanocomposite membranes using 1.5 g of ZnO nanoparticles (NPs). The prepared nanocomposite membrane surface was fully characterized by a series of experimental tools, e.g., Scanning electron microscope (SEM), Atomic force microscopy (AFM), contact angle (CA), pore size, and pore size distribution. The testing procedure was performed through an Activated Sludge-Membrane Bioreactor (ASMBR) as a reference and results were compared with those obtained with nanotubes coated sponge–MBR (NSMBR) and nanotubes coated sponge-MBR in the presence of an electrical field (ENSMBR) system. Observed fouling reduction of the membrane has improved significantly and, thus, the overall long-term was increased by 190% compared with the control ASMBR configuration. The experimental results showcased that sponge-carbon nanotubes (CNTs) were capable of adsorbing activated sludge and other contaminants to minimize the membrane fouling. At a dosage of 0.3 mg/mL CNT and 2 mg/mL of SDBS, the sponge-CNT was capable of eliminating nitrogen and phosphorus by 81% and >90%, respectively.
Remediation technology is a promising technique that decreases pollutants like hydrocarbons from the environment. An experimental work was done at green house of University of Technology in order to study the effect of crude oil on the plant growth and to measure the decrement which happened on shoot height, germination rate and the reduction of total petroleum hydrocarbon (TPH), which resulted by this phytoremediation technique. The samples of soil were measured for TPH reduction and removal by Horiba model OCMA - 350. Five doses were used in this experiment (0 control, 10x103, 30 x103, 50 x103, 75 x103) (mg crude oil / kg soil) or (ppm). The greater efficiency was obtained in the treatment 50 x103 ppm seeded with cotton, in which cotton removed 50.66% of the primary TPHs from soil. Results showed that the employed vegetate species were promising and effective in reducing and removing TPHs from freshly polluted soil.
Due to low water fluxes, commercial ultrafiltration (UF) membranes used in water treatment need to be improved. High-quality UF membranes were fabricated from polysulfone (PSF)/titanium dioxide (TiO2) nanocomposite fibers as substrates using the spray pyrolysis method. The influence of nano-TiO2 on the UF nanocomposite membrane was studied. Scanning electron microscopy (SEM), contact angle, and porosity were evaluated to characterize the mechanical characteristics of the membranes. The results show that adding TiO2 to the substrates increased the hydrophilicity and porosity of the substrates. The pure water flux of the Thin Film Nanocomposite (TFN) membrane manufactured utilizing a PSF substrate coated with 0.1 wt% TiO2 nanoparticles (denoted as Pc 0.1) improved at a rate of 35.28 l/m 2 .h, and for a PSF substrate coated with 0.2 wt% TiO2 nanoparticles (denoted as Pc 0.2) improved at a rate of 44 l/m 2 .h. Additionally, increasing TiO2 nanoparticle loading to 0.1 and 0.2 wt. percent resulted in higher water flow over 20 l/m 2 .h PSF commercial membrane. The results of the UF performance show that Pc 0.2 membrane offered the most promising results, with a high-water flux than commercial membranes without nano-TiO2 (Pc).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.