Predicting stock price remains one of the challenges for investors' investment strategies. This study helps with accurate prediction and the main factors affecting variations in stock prices. It applies an adaptive neuro-fuzzy model on 58 listed firms from both the Abu Dhabi Securities Exchange and the Dubai Financial Market for the period 2014-2018 to estimate the predictive power of corporate performance measures and their significance. After examining four performance predictors-return on asset (ROA), return on equity (ROE), earning per share (EPS), and profit margin (PM)-the study finds that ROE is the most significant predictor and ROA is the least. EPS is the most influential profitability measure and PM the least.
The COVID-19 pandemic introduced unprecedented challenges for people and governments. Vaccines are an available solution to this pandemic. Recipients of the vaccines are of different ages, gender, and religion. Muslims follow specific Islamic guidelines that prohibit them from taking a vaccine with certain ingredients. This study aims at analyzing Facebook and Twitter data to understand the discourse related to halal vaccines using aspect-based sentiment analysis and text emotion analysis. We searched for the term “halal vaccine” and limited the timeline to the period between 1 January 2020, and 30 April 2021, and collected 6037 tweets and 3918 Facebook posts. We performed data preprocessing on tweets and Facebook posts and built the Latent Dirichlet Allocation (LDA) model to identify topics. Calculating the sentiment analysis for each topic was the next step. Finally, this study further investigates emotions in the data using the National Research Council of Canada Emotion Lexicon. Our analysis identified four topics in each of the Twitter dataset and Facebook dataset. Two topics of “COVID-19 vaccine” and “halal vaccine” are shared between the two datasets. The other two topics in tweets are “halal certificate” and “must halal”, while “sinovac vaccine” and “ulema council” are two other topics in the Facebook dataset. The sentiment analysis shows that the sentiment toward halal vaccine is mostly neutral in Twitter data, whereas it is positive in Facebook data. The emotion analysis indicates that trust is the most present emotion among the top three emotions in both datasets, followed by anticipation and fear.
Accreditation criteria of Information Technology programs require effective learning outcomes assessment and evaluation with rigorous processes, well documented results, broad faculty participation, and complete coverage of the assessment and evaluation cycle. This paper describes a model that theCollegeofInformation Technologyat Ajman University of Science and Technology uses to implement a complete outcome-based assessment and evaluation plan of its programs. The plan contains detailed accounts of procedures and tools used to measure the achievements of program learning outcomes. Information which is gathered from exam results, faculty, students, alumni, internship, and employers are used to measure the level of achievement of each learning outcome from a different perspective. A final decision is made with respect to each learning outcome. This decision is based on combining the results of the various relevant measurement tools for that outcome. The assessment model described in this paper was used for the successful accreditation of all programs offered by thecollegeofInformation Technologyand adopted by other colleges at the University.
Banking risk measurement and management remain one of many challenges for managers and policymakers. This study contributes to the banking literature and practice in two ways by (a) proposing a risk ranking index based on the Mahalanobis Distance (MD) between a multidimensional point representing a bank’s risk measures and the corresponding critical ratios set by the banking authorities and (b) determining the relative importance of a bank’s risk ratios in affecting its financial standing using an Adaptive Neuro-Fuzzy Inference System. In this study, ten financial ratios representing five risk areas were considered, namely: Capital Adequacy, Credit, Liquidity, Earning Quality, and Operational risk. Data from 45 Gulf banks for the period 2016–2020 was used to develop the model. Our findings indicate that a bank is in a sound risk position at the 99%, 95%, and 90% confidence level if its Mahalanobis distance exceeds 4.82, 4.28, and 4.0, respectively. The maximum distance computed for the banks in this study was 9.31; only five out of the forty-five banks were below the 4.82 and one below the 4.28 and 4.0 thresholds at 3.96. Sensitivity analysis of the risks indicated that the Net Interest Margin is the most significant factor in explaining variations in a bank’s risk position, followed by Capital Adequacy Ratio, Common Equity Tier1, and Tier1 Equity in order. The remaining financial ratios: Non-Performing Loans, Equity Leverage, Cost Income Ratio, Loans to Total Assets, and Loans to Deposits have the least influence in the order given; the Provisional Loans Ratio appears to have no influence.
Predicting student’s successful completion of academic programs and the features that influence their performance can have a significant effect on improving students’ completion, and graduation rates and reduce attrition rates. Therefore, identifying students are at risk, and the courses where improvements in content, delivery mode, pedagogy, and assessment activities can improve students’ learning experience and completion rates. In this work, we have developed a prediction and explanatory model using adaptive neuro-fuzzy inference system (ANFIS) methodology to predict the grade point average (GPA), at graduation time, of students enrolled in the information technology program at Ajman University. The approach adopted uses students’ grades in introductory and fundamental IT courses and high school grade point average (HSGPA) as predictors. Sensitivity analysis was performed on the model to quantify the relative significance of each predictor in explaining variations in graduation GPA. Our findings indicate HSGPA is the most influential factor in predicting graduation GPA, with data structures, operating systems, and software engineering coming closely in second place. On the explanatory side, we have found that discrete mathematics was the most influential course causing variations in graduation GPA, followed by software engineering, information security, and HSGPA. When we ran the model on the testing data, 77% of the predicted values fell within one root mean square error (0.29) of the actual GPA, which has a maximum of four. We have also shown that the ANFIS approach has better predictive accuracy than commonly used techniques such as multilinear regression. We recommend that IT programs at other institutions conduct comparable studies and shed some light on our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.