RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and Il-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3'UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.
Aims
At the beginning of spinal cord injury (SCI), the expression of EphB2 on fibroblasts and ephrin‐B2 on astrocytes increased simultaneously and their binding triggers the formation of astroglial‐fibrotic scars, which represent a barrier to axonal regeneration. In the present study, we sought to suppress scar formation and to promote recovery from SCI by targeting EphB2 in vivo.
Methods
The female rats SCI models were used in vivo experiments by subsequently injecting with EphB2 shRNA lentiviruses. The effect on EphB2 knockdown was evaluated at 14 days after injury. The repair outcomes were evaluated at 3 months by electrophysiological and morphological assessments to regenerated nerve tissue. The EphB2 expression and TGF‐β1 secretion were detected in vitro using a lipopolysaccharides (LPS)‐induced astrocyte injury model.
Results
RNAi decreased the expression of EphB2 after SCI, which effectively inhibited fibroblasts and astrocytes from aggregating at 14 days. The expression of EphB2 in activated astrocytes, in addition to fibroblasts, was significantly increased after SCI in vivo, in line with upregulated expression of EphB2 and increased secretion of TGF‐β1 in astrocyte culture treated with LPS. Compared to the scramble control, RNAi targeting with EphB2 could promote more nerve regeneration and better myelination.
Conclusions
EphB2 knockdown may effectively inhibit the formation of astroglial‐fibrotic scars at the beginning of SCI. It is beneficial to eliminate the barrier of nerve regeneration.
Human papillomavirus (HPV) positive head and neck cancer displayed specific transcription landscape but the underlying molecular mechanisms are not fully determined. Here, we interestingly found that HPV infection could globally elongate the 3’-untranslated regions (3’UTRs) in the majority of alternative polyadenylation (APA)-containing genes. Counterintuitively, the 3’UTR elongation does not affect their resident gene expression. Rather, they significantly increase the number of binding sites for RNA-binding proteins (RBPs) and subsequently upregulate a group of oncogenic genes by absorbing RBPs. A significant fraction of HPV affected genes are regulated through such mechanism that is 3’UTR-mediated recruitment of RBPs. As an example, we observed that HPV infection increases the length of 3’UTR of RBM25 transcript and hence recruits much more RNA binding protein including FUS and DGCR8. Consequently, in the absence of FUS and DGCR8 regulation, PD-1 was rescued and up-regulated after HPV infection. Taken together, our findings not only suggest a novel paradigm of how oncogenic viruses shape tumor transcriptome by modifying the 3’UTR, but also present a previously unrecognized layer of APA—RBP interplay in this molecular hierarchy. Modification of the pool of RBP-binding motif might expand our understandings into virus-associated carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.