Adenosine and dopamine signaling exert opposite effects in the basal ganglia, a brain region involved in sensory-motor integration. Thus, adenosine agonists induce motor depression and adenosine antagonists, such as caffeine, produce motor activation (1). These opposite effects result from specific antagonistic interactions between subtypes of adenosine and dopamine receptors in the striatum, the main input structure of the basal ganglia. In fact, striatal dopamine receptors and, to some extent, adenosine receptors are segregated in the two main populations of ␥-aminobutyric acid (GABA) efferent neurons. EXPERIMENTAL PROCEDURESCell Cultures-Maintenance of SH-SY5Y cells (parental and D 2 Rtransfected cells) as well as the pharmacological characterization and maintenance of D 2 R-and D 1 R-transfected mouse fibroblast Ltk Ϫ cells are described in detail elsewhere (7-9). For primary cultures, striata were removed from 16-day-old Sprague-Dawley rat embryos (B&K Universal) in Ca 2ϩ /Mg 2ϩ -free PBS supplemented with 20 units/ml penicillin and 20 g/ml streptomycin (Invitrogen). The tissue fragments were pooled and mechanically dissociated in SFM Neurobasal serum-free medium (Invitrogen), supplemented with B27 (Invitrogen), glutamine (2 mM; Invitrogen), penicillin/streptomycin (20 units/ml/20 g/ml; Invitrogen), and -mercaptoethanol (25 M) (Invitrogen). Cells were collected by centrifugation at 100 ϫ g for 5 min and resuspended in fresh medium. The resulting single-cell suspension was seeded on 24-well plates coated with gelatin (Sigma) and poly-L-lysine (Sigma), and cells were grown at 37°C in saturation humidity with 5% CO 2 .Immunolabeling Experiments-Neuroblastoma cells were grown on glass coverslips coated with poly-L-lysine (Sigma) and exposed to vari-* This work was
Although both c-Ret and GFRalpha1 are required for responsiveness to GDNF, GFRalpha1 is widely expressed in the absence of c-Ret, suggesting alternative roles for "ectopic" sites of GFRalpha1 expression. We show that GFRalpha1 is released by neuronal cells, Schwann cells, and injured sciatic nerve. c-Ret stimulation in trans by soluble or immobilized GFRalpha1 potentiates downstream signaling, neurite outgrowth, and neuronal survival, and elicits dramatic localized expansions of axons and growth cones. Soluble GFRalpha1 mediates robust recruitment of c-Ret to lipid rafts via a novel mechanism requiring the c-Ret tyrosine kinase. Activated c-Ret associates with different adaptor proteins inside and outside lipid rafts. These results provide an explanation for the tissue distribution of GFRalpha1, supporting the physiological importance of c-Ret activation in trans as a novel mechanism to potentiate and diversify the biological responses to GDNF.
Yap is a transcriptional co-activator that regulates cell proliferation and apoptosis downstream of the Hippo kinase pathway. We investigated Yap function during mouse kidney development using a conditional knockout strategy that specifically inactivated Yap within the nephrogenic lineage. We found that Yap is essential for nephron induction and morphogenesis, surprisingly, in a manner independent of regulation of cell proliferation and apoptosis. We used microarray analysis to identify a suite of novel Yap-dependent genes that function during nephron formation and have been implicated in morphogenesis. Previous in vitro studies have indicated that Yap can respond to mechanical stresses in cultured cells downstream of the small GTPases RhoA. We find that tissue-specific inactivation of the Rho GTPase Cdc42 causes a severe defect in nephrogenesis that strikingly phenocopies loss of Yap. Ablation of Cdc42 decreases nuclear localization of Yap, leading to a reduction of Yap-dependent gene expression. We propose that Yap responds to Cdc42-dependent signals in nephron progenitor cells to activate a genetic program required to shape the functioning nephron.
The RET proto-oncogene encodes a receptor tyrosine kinase for the glial cell line-derived neurotrophic factor family of ligands. Loss-of-function mutations in RET are implicated in Hirschsprung disease, whereas activating mutations in RET are found in human cancers, including familial medullar thyroid carcinoma and multiple endocrine neoplasias 2A and 2B. We report here the biochemical characterization of the human RET tyrosine kinase domain and the structure determination of the non-phosphorylated and phosphorylated forms. Both structures adopt the same active kinase conformation competent to bind ATP and substrate and have a pre-organized activation loop conformation that is independent of phosphorylation status. In agreement with the structural data, enzyme kinetic data show that autophosphorylation produces only a modest increase in activity. Longer forms of RET containing the juxtamembrane domain and C-terminal tail exhibited similar kinetic behavior, implying that there is no cis-inhibitory mechanism within the RET intracellular domain. Our results suggest the existence of alternative inhibitory mechanisms, possibly in trans, for the autoregulation of RET kinase activity. We also present the structures of the RET tyrosine kinase domain bound to two inhibitors, the pyrazolopyrimidine PP1 and the clinically relevant 4-anilinoquinazoline ZD6474. These structures explain why certain multiple endocrine neoplasia 2-associated RET mutants found in patients are resistant to inhibition and form the basis for design of more effective inhibitors.The RET (rearranged during transfection) gene was originally isolated as an oncogenic fusion protein in cell transformation assays (1). The RET proto-oncogene (2), on human chromosome 10q11.2, encodes a receptor tyrosine kinase (RTK) 4 (3-5) activated by members of the glial cell line-derived neurotrophic factor (GDNF) ligand family (GDNF, neurturin, artemin, and persephin) (6) in conjunction with a ligand-specific coreceptor (GFR␣1-4) (7). RET signaling is essential for development, survival, and regeneration of many neuronal populations such as those in the enteric and sympathetic nervous systems (6) and the kidney (8, 9). The domain organization of RET is shown in Fig. 1A; orthologs exist from Drosophila to human and share a high degree of sequence similarity (90% in vertebrates) throughout the cytoplasmic domain and, to a lesser extent, within the extracellular region.GDNF family ligands do not interact directly with RET; instead, signaling via RET depends on formation of a tripartite complex of RET, a GDNF family ligand, and its cognate glycosylphosphatidylinositol-linked GFR␣ (10, 11). In addition, ligand binding requires Ca 2ϩ ions chelated to the RET extracellular domain (12, 13). According to the classical RTK paradigm, formation of the complex promotes RET dimerization, leading to trans-autophosphorylation within the RET intracellular domain (RET-ICD). There are two tyrosine residues (Tyr 900 and Tyr 905 ) in the RET tyrosine kinase domain (RET-KD) activation loop (...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.