This paper presents a novel binary bat algorithm (NBBA) to solve 0-1 knapsack problems. The proposed algorithm combines two important phases: binary bat algorithm (BBA) and local search scheme (LSS). The bat algorithm enables the bats to enhance the exploration capability while LSS aims to boost the exploitation tendencies and, therefore, it can prevent the BBA-LSS from the entrapment in the local optima. Moreover, the LSS starts its search from BBA found so far. By this methodology, the BBA-LSS enhances the diversity of bats and improves the convergence performance. The proposed algorithm is tested on different size instances from the literature. Computational experiments show that the BBA-LSS can be promise alternative for solving large-scale 0-1 knapsack problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.