Metal Pb(II) is one of the pollutants that causes water pollution and impacts ecosystem damage. Pb(II) metal waste is toxic and biomagnification, so it harms human health. The combination of electrocoagulation and adsorption processes is an efficient and effective alternative in removing Pb(II) metal in wastewater. In this study, the wastewater treatment process is carried out in batch using electrocoagulation with aluminum electrodes and followed by activated carbon adsorption. This research aimed to analyze the effect of electrical voltage in electrocoagulation, adsorption time, and adsorbent dose on reducing Pb(II) concentration. Electrocoagulation and adsorption processes were used variations of electrical voltage (10, 20, 30 V), adsorption times (15, 30, 45 minutes), and adsorbent doses (2,5, 3,3, 4,1, 5 g/L). The research showed that the combination of electrocoagulation and adsorption could significantly reduce Pb(II) concentration in wastewater. Increased electrical voltage, adsorption time, and adsorbent dose lead to increased Pb(II). The maximum removal efficiency of Pb(II) metal was obtained under voltage of 30 V, 45 minutes adsorption time, and 5 g/L adsorbent dose. This condition resulted in removal efficiency Pb(II) of 96,01%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.