Mahasiswa yang akan melakukan pendaftaran ke perguruan tinggi, baik ke jenjang sarjana atau pascasarjana pasti harus diseleksi. Proses seleksi dengan tes dan serangkaian kegiatan lainnya. Nilai-nilai tes tersebut kemudian dianalisa untuk mengetahui apakah mahasiswa layak diterima atau tidak. Beberapa perguruan tinggi di Amerika Serikat atau Inggris melakukan serangkaian tes mulai tes akademik, tes bahasa Inggris dan kemampuan meneliti. Dari beberapa data hasil seleksi atau ujian dapat digunakan untuk memprediksi calon mahasiswa baru yang akan masuk perguruan tinggi. Tujuan penelitian ini adalah memprediksi nilai calan mahasiswa yang akan masuk di perguruan tinggi. Studi kasus ini mengambil dari data kaggle, yang akan diprediksi dengan menggunakan algoritma backpropagation. Variabel yang menjadi input adalah GRE score, TOEFL score, Universiy rating, SOP, LOR, GPA, Research. Output dari prediksi nilai calon mahasiswa dalam angka. Proses training backpropagation menggunakan toole Matlab dengan arsitektur jaringan 2 model. Model ke-1 menggunakan 7-5-1 dengan hasil MSE 0,00272. Model ke-2 menggunakan 7-4-1 dengan hasil MSE 0,0029.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.