BackgroundSeveral methodological approaches have been used to estimate distance in health service research. In this study, focusing on cardiac catheterization services, Euclidean, Manhattan, and the less widely known Minkowski distance metrics are used to estimate distances from patient residence to hospital. Distance metrics typically produce less accurate estimates than actual measurements, but each metric provides a single model of travel over a given network. Therefore, distance metrics, unlike actual measurements, can be directly used in spatial analytical modeling. Euclidean distance is most often used, but unlikely the most appropriate metric. Minkowski distance is a more promising method. Distances estimated with each metric are contrasted with road distance and travel time measurements, and an optimized Minkowski distance is implemented in spatial analytical modeling.MethodsRoad distance and travel time are calculated from the postal code of residence of each patient undergoing cardiac catheterization to the pertinent hospital. The Minkowski metric is optimized, to approximate travel time and road distance, respectively. Distance estimates and distance measurements are then compared using descriptive statistics and visual mapping methods. The optimized Minkowski metric is implemented, via the spatial weight matrix, in a spatial regression model identifying socio-economic factors significantly associated with cardiac catheterization.ResultsThe Minkowski coefficient that best approximates road distance is 1.54; 1.31 best approximates travel time. The latter is also a good predictor of road distance, thus providing the best single model of travel from patient's residence to hospital. The Euclidean metric and the optimal Minkowski metric are alternatively implemented in the regression model, and the results compared. The Minkowski method produces more reliable results than the traditional Euclidean metric.ConclusionRoad distance and travel time measurements are the most accurate estimates, but cannot be directly implemented in spatial analytical modeling. Euclidean distance tends to underestimate road distance and travel time; Manhattan distance tends to overestimate both. The optimized Minkowski distance partially overcomes their shortcomings; it provides a single model of travel over the network. The method is flexible, suitable for analytical modeling, and more accurate than the traditional metrics; its use ultimately increases the reliability of spatial analytical models.
Body weight is an important indicator of current and future health and it is even more critical in children, who are tomorrow's adults. This paper analyzes the relationship between childhood obesity and neighbourhood walkability in Calgary, Canada. A multivariate analytical framework recognizes that childhood obesity is also associated with many factors, including socioeconomic status, foodscapes, and environmental factors, as well as less measurable factors, such as individual preferences, that could not be included in this analysis. In contrast with more conventional global analysis, this research employs localized analysis and assesses need-based interventions. The one-size-fit-all strategy may not effectively control obesity rates, since each neighbourhood has unique characteristics that need to be addressed individually. This paper presents an innovative framework combining local analysis with simulation modeling to analyze childhood obesity. Spatial models generally do not deal with simulation over time, making it cumbersome for health planners and policy makers to effectively design and implement interventions and to quantify their impact over time. This research fills this gap by integrating geographically weighted regression (GWR), which identifies vulnerable neighbourhoods and critical factors for childhood obesity, with simulation modeling, which evaluates the impact of the suggested interventions on the targeted neighbourhoods. Neighbourhood walkability was chosen as a potential target for localized interventions, owing to the crucial role of walking in developing a healthy lifestyle, as well as because increasing walkability is relatively more feasible and less expensive then modifying other factors, such as income. Simulation results suggest that local walkability interventions can achieve measurable declines in childhood obesity rates. The results are encouraging, as improvements are likely to compound over time. The results demonstrate that the integration of GWR and simulation modeling is effective, and the proposed framework can assist in designing local interventions to control and prevent childhood obesity.
Universal access to primary healthcare facilities is a driving goal of healthcare organizations. Despite Canada’s universal access to primary healthcare status, spatial accessibility to healthcare facilities is still an issue of concern due to the non-uniform distribution of primary healthcare facilities and population over space—leading to spatial inequity in the healthcare sector. Spatial inequity is further magnified when health-related accessibility studies are analyzed on the assumption of universal car access. To overcome car-centric studies of healthcare access, this study compares different travel modes—driving, public transit, and walking—to simulate the multi-modal access to primary healthcare services in the City of Calgary, Canada. Improving on floating catchment area methods, spatial accessibility was calculated based on the Spatial Access Ratio method, which takes into consideration the provider-to-population status of the region. The analysis revealed that, in the City of Calgary, spatial accessibility to the primary healthcare services is the highest for the people with an access to a car, and is significantly lower with multimodal (bus transit and train) means despite being a large urban centre. The social inequity issue raised from this analysis can be resolved by improving the city’s pedestrian infrastructure, public transportation, and construction of new clinics in regions of low accessibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.