In this study, an automatic detection method for mura defects is developed based on an accurate reconstruction of the background and precise evaluation of the mura index level. To achieve this, an effective background reconstruction method is first developed to represent the brightness intensity of the display panel. As a result, any nonuniform brightness of the background can be removed effectively. Furthermore, the associated mura level is quantified based on the sensitivity of the human eye in order to alternatively grade the liquid‐crystal display panels. The main focus of this study is on the reconstruction of the background from the display under test image. The proposed method takes full advantage of the following three existing methods: low‐pass filtering, discrete cosine transform, and polynomial surface fitting. By applying the method to several case studies, we have shown that it is more effective compared with other existing methods in detecting various types of mura defects.
In the field of soft electronics, high-resolution and transparent structures based on various flexible materials constructed via various printing techniques are gaining attention. With the support of electrical stress-induced conductive inks, the electrohydrodynamic (EHD) jet printing technique enables us to build high-resolution structures compared with conventional inkjet printing techniques. Here, EHD jet printing was used to fabricate a high-resolution, transparent, and flexible strain sensor using a polydimethylsiloxane (PDMS)/xylene elastomer, where repetitive and controllable high-resolution printed mesh structures were obtained. The parametric effects of voltage, flow rate, nozzle distance from the substrate, and speed were experimentally investigated to achieve a high-resolution (5 µm) printed mesh structure. Plasma treatment was performed to enhance the adhesion between the AgNWs and the elastomer structure. The plasma-treated functional structure exhibited stable and long strain-sensing cycles during stretching and bending. This simple printing technique resulted in high-resolution, transparent, flexible, and stable strain sensing. The gauge factor of the strain sensor was significantly increased, owing to the high resolution and sensitivity of the printed mesh structures, demonstrating that EHD technology can be applied to high-resolution microchannels, 3D printing, and electronic devices.
This study addressed the dynamics of capillary-driven flow for different surface wettabilities by concentrating on the influence of electric potential. The capillary flow dynamics were investigated by varying the wettability (plasma-treated, hydrophobic, hydrophilic, and superhydrophilic) of a capillary surface, and the applied electric potential to the liquid ranged from 0 to 500 V. When an electric potential was applied to the liquid, the fluid flow penetration length increased by 30−50% due to the electrohydrodynamic (EHD)-driven flow by the Maxwell (electric) pressure gradient effect. The results showed that the EHD effect enhanced the fluid penetration through narrow gaps. The maximum fluid penetration was attained for every surface at 500 V, particularly for the superhydrophilic surface, which exhibited the highest value. The combined effect of the electric field and wettability resulted in an enhanced fluid penetration speed, reducing the underfill time. In addition, theoretical and numerical models were developed for comparison with the experimental results. The proposed models reinforce the observed fluid flow phenomenon on various surfaces under the influence of an electric field. These findings can provide alternative strategies for controlling the dynamic features of capillary imbibition by introducing an electric field and wettability effects, which has practical implications in flip-chip packaging, microfluidic devices, and the manipulation of biocells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.