SUMMARY High‐pressure scanning electron microscopy (HPSEM) is a promising new family of techniques. The present knowledge of these techniques is reviewed and a new set of criteria developed for optimizing signal detection in HPSEM with a view to preserving specimen integrity. For this purpose, amplification of contrast signals generated in HPSEM was examined by computing the effect of ionization over a range of pressures and biasing fields, routinely used for this technique. The influence of secondary ionization due to ion impact was included in the calculations. To check the calculated results, the experiments were performed in the HPSEM apparatus in a nitrogen atmosphere. A divergence between the experimental values and the calculated values was found. This was removed by taking into account the effect of recombination of charge carriers. Inductive currents generated in the HPSEM environment are transient and do not affect the conclusions of this study. The gas pressure, biasing fields and beam current for preserving specimen integrity and obtaining good micrographs were selected from the data. Experimental measurements of noise are reported, and criteria for optimizing the signal‐to‐noise ratio for performing HPSEM are discussed. The application of these criteria has shown that specimen current detection can be more advantageous than other methods and configurations of detection and was capable of obtaining high/medium‐resolution micrographs.
It is now possible to perform High Pressure Scanning Electron Microscopy (HPSEM) in the range 10 to 2000 Pa. Here the effect of scattering on resolution has been evaluated by calculating the profile of the beam in high pressure and assessing its effect on the image contrast . An experimental scheme is presented to show that the effect of the primary beam ionization is to reduce image contrast but this effect can be eliminated by a novel use of specimen current detection in the presence of an electric field. The mechanism of image enhancement is discussed in terms of collection of additional carriers generated by the emissive components.High Pressure SEM (HPSEM) instrumentation is establishing itself as commercially viable. There are now a number of manufacturers, such as JEOL, ABT, ESCAN, DEBEN RESEARCH, selling microscopes and accessories for HPSEM. This is because high pressure techniques have begun to yield high quality micrographs at medium resolution.To study the effect of scattering on the incident electron beam, its profile - in a high pressure environment - was evaluated by calculating the elastic and inelastic scattering cross sections for nitrogen in the energy range 5-25 keV. To assess the effect of the scattered beam on the image contrast, the modification of a sharp step contrast function due to scattering was calculated by single scattering approximation and experimentally confirmed for a 20kV accelerated beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.