With the aim of fuelling open-source, translational, early-stage drug discovery activities, the results of the recently completed antimycobacterial phenotypic screening campaign against Mycobacterium bovis BCG with hit confirmation in M. tuberculosis H37Rv were made publicly accessible. A set of 177 potent non-cytotoxic H37Rv hits was identified and will be made available to maximize the potential impact of the compounds toward a chemical genetics/proteomics exercise, while at the same time providing a plethora of potential starting points for new synthetic lead-generation activities. Two additional drug-discovery-relevant datasets are included: a) a drug-like property analysis reflecting the latest lead-like guidelines and b) an early lead-generation package of the most promising hits within the clusters identified.
As a follow up to the antimycobacterial screening exercise and the release of GSK´s first Tres Cantos Antimycobacterial Set (TCAMS-TB), this paper presents the results of a second antitubercular screening effort of two hundred and fifty thousand compounds recently added to the GSK collection. The compounds were further prioritized based on not only antitubercular potency but also on physicochemical characteristics. The 50 most attractive compounds were then progressed for evaluation in three different predictive computational biology algorithms based on structural similarity or GSK historical biological assay data in order to determine their possible mechanisms of action. This effort has resulted in the identification of novel compounds and their hypothesized targets that will hopefully fuel future TB drug discovery and target validation programs alike.
These experiments demonstrate that GW813893 is a potent, selective, orally active inhibitor of FXa. The data suggest that GW813893 has robust antithrombotic potential at doses that have no detectable hemostasis liability. Collectively, the profile suggests that GW813893 has the preclinical pharmacology underpinnings of an oral antithrombotic therapeutic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.