Abstract. Nine call center employees wore a skin conductance sensor on the wrist for a week at work and reported stress levels of each call. Although everyone had the same job profile, we found large differences in how individuals reported stress levels, with similarity from day to day within the same participant, but large differences across the participants. We examined two ways to address the individual differences to automatically recognize classes of stressful/non-stressful calls, namely modifying the loss function of Support Vector Machines (SVMs) to adapt to the varying priors, and giving more importance to training samples from the most similar people in terms of their skin conductance lability. We tested the methods on 1500 calls and achieved an accuracy across participants of 78.03% when trained and tested on different days from the same person, and of 73.41% when trained and tested on different people using the proposed adaptations to SVMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.