Pollen, microscopic charcoal, palaeohydrological and dendrochronological analyses are applied to a radiocarbon and tephrochronologically dated mid Holocene (ca. 8500–3000 cal B.P.) peat sequence with abundant fossil Pinus (pine) wood. The Pinus populations on peat fluctuated considerably over the period in question. Colonisation by Pinus from ca. 7900–7600 cal B.P. appears to have had no specific environmental trigger; it was probably determined by the rate of migration from particular populations. The second phase, at ca. 5000–4400 cal B.P., was facilitated by anthropogenic interference that reduced competition from other trees. The pollen record shows two Pinus declines. The first at ca. 6200–5500 cal B.P. was caused by a series of rapid and frequent climatic shifts. The second, the so-called pine decline, was very gradual (ca. 4200–3300 cal B.P.) at Loch Farlary and may not have been related to climate change as is often supposed. Low intensity but sustained grazing pressures were more important. Throughout the mid Holocene, the frequency and intensity of burning in these open Pinus–Calluna woods were probably highly sensitive to hydrological (climatic) change. Axe marks on several trees are related to the mid to late Bronze Age, i.e., long after the trees had died
Abstract:The application of high-resolution imagery from unmanned aerial vehicles (UAV) to classify the spatial extent and morphological character of ground and polished stone tool production at quarry sites in the Shetland Islands is explored in this paper. These sites are manifest as dense concentrations of felsite and artefacts clearly visible on the surface of the landscape. Supervised classification techniques are applied to map material extents in detail, while a topological analysis of surface rugosity derived from an image-based modelling (IBM) generated high-resolution elevation model is used to remotely assess the size and morphology of the material. While the approach is unable to directly characterize felsite as debitage, it successfully captured size and morphology, key indicators of archaeological activity. It is proposed that the classification of red, green and blue (RGB) imagery and rugosity analysis derived from IBM from UAV collected photographs can remotely provide data on stone quarrying processes and can act as an invaluable decision support tool for more detailed targeted field characterisation, especially on large sites where material is spread over wide areas. It is suggested that while often available, approaches like this are largely under-utilized, and there is considerable added value to be gained from a more in-depth study of UAV imagery and derived datasets.
By the time the Roman empire reached its greatest extent, in the early decades of the second century ad, wooden barrels were a key part of a trade network that supported a complex extended economy. These objects do not, however, routinely survive in the archaeological record and very few sites have yielded large, multi-phase, assemblages for study. Although relatively rare, individual finds and assemblages have been found sufficiently regularly to allow us to consider barrel production and use during the Roman period. These objects can have complex cultural biographies from their original production to their final deposition. Current and previous research at Vindolanda, a Roman fort in northern Britain at the edge of the Roman empire, provides a context for reflection on these objects and their biographies. Emphasis is given to whether this material demonstrates repeated, possibly habituated, practices of adaption and recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.