Using footage from body-worn cameras, we analyze the respectfulness of police officer language toward white and black community members during routine traffic stops. We develop computational linguistic methods that extract levels of respect automatically from transcripts, informed by a thin-slicing study of participant ratings of officer utterances. We find that officers speak with consistently less respect toward black versus white community members, even after controlling for the race of the officer, the severity of the infraction, the location of the stop, and the outcome of the stop. Such disparities in common, everyday interactions between police and the communities they serve have important implications for procedural justice and the building of police-community trust.racial disparities | natural language processing | procedural justice | traffic stops | policing
We provide an NLP framework to uncover four linguistic dimensions of political polarization in social media: topic choice, framing, affect and illocutionary force. We quantify these aspects with existing lexical methods, and propose clustering of tweet embeddings as a means to identify salient topics for analysis across events; human evaluations show that our approach generates more cohesive topics than traditional LDA-based models. We apply our methods to study 4.4M tweets on 21 mass shootings. We provide evidence that the discussion of these events is highly polarized politically and that this polarization is primarily driven by partisan differences in framing rather than topic choice. We identify framing devices, such as grounding and the contrasting use of the terms "terrorist" and "crazy", that contribute to polarization. Results pertaining to topic choice, affect and illocutionary force suggest that Republicans focus more on the shooter and event-specific facts (news) while Democrats focus more on the victims and call for policy changes. Our work contributes to a deeper understanding of the way group divisions manifest in language and to computational methods for studying them. 1
We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log
10
increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV—CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences—is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.