Ebolavirus causes sporadic outbreaks of lethal hemorrhagic fever in humans with no currently approved therapy. Cells take up Ebolavirus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebolavirus entry into host cells requires the endosomal calcium channels called two pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs or small molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule we tested, inhibited infection of human macrophages, the primary target of Ebolavirus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebolavirus infection and may be effective targets for antiviral therapy.
The protein Sonic hedgehog (Shh) is essential for a variety of patterning events during development. It is the signal from the notochord that induces ventral cell fate in the neural tube and somites, and is the polarizing signal for patterning of the anterior-posterior axis of the developing limb bud. Because of these and other inductive functions of Shh, it is important to understand how the Hedgehog (Hh) signal is received by the target cells. Here we describe binding studies using labelled Shh that strongly suggest that the Hh receptor is encoded by patched (ptc), a gene first identified in genetic screens in Drosophila.
The glycoproteins (GP) of enveloped viruses facilitate entry into the host cell by interacting with specific cellular receptors. Despite extensive study, a cellular receptor for the deadly filoviruses Ebolavirus and Marburgvirus has yet to be identified and characterized. Here, we show that T-cell Ig and mucin domain 1 (TIM-1) binds to the receptor binding domain of the Zaire Ebola virus (EBOV) glycoprotein, and ectopic TIM-1 expression in poorly permissive cells enhances EBOV infection by 10-to 30-fold. Conversely, reduction of cell-surface expression of TIM-1 by RNAi decreased infection of highly permissive Vero cells. TIM-1 expression within the human body is broader than previously appreciated, with expression on mucosal epithelia from the trachea, cornea, and conjunctiva-tissues believed to be important during in vivo transmission of filoviruses. Recognition that TIM-1 serves as a receptor for filoviruses on these mucosal epithelial surfaces provides a mechanistic understanding of routes of entry into the human body via inhalation of aerosol particles or hand-to-eye contact. ARD5, a monoclonal antibody against the IgV domain of TIM-1, blocked EBOV binding and infection, suggesting that antibodies or small molecules directed against this cellular receptor may provide effective filovirus antivirals. viral entry | viral receptor | virion internalization T he Filoviridae family of viruses is composed of two genera, Ebolavirus and Marburgvirus, which cause hemorrhagic fever in humans and nonhuman primates. Infection with some strains of filoviruses causes fatality in 50-90% of human cases (1). The viral glycoprotein (GP) of Ebolavirus, which consists of surfaceexposed subunit GP1 attached to membrane-bound subunit GP2 by a disulfide bond (2), mediates binding to, penetration of, and fusion with host-cell membranes (3, 4). Pseudovirions bearing Ebolavirus GP transduce a broad range of cells through interactions that require the GP1 receptor-binding domain (RBD) (5-8). Upon internalization into low-pH endosomes, the filovirus GP1 is proteolyzed by cathepsins B and L, leading to GP2-dependent fusion of the viral and host membranes (9-12). Several proteins enhance filovirus entry in host cells, including the C-type lectins L-SIGN, DC-SIGN, and hMGL, as well as RhoB/C, integrin α5β1, folate receptor-α, and the tyrosine kinase receptor Axl (13-26); however, because none of these molecules has been shown to interact with the RBD of the filovirus GP1, it is unlikely that any of these proteins serve as a receptor for this family of viruses. Thus, we used gene correlation analysis to search for additional potential receptors. Here, we identify T-cell Ig and mucin domain 1 (TIM-1), which interacts with Zaire ebolavirus (EBOV) GP and enhances EBOV infection by 10-to 30-fold upon expression, providing strong evidence that TIM-1 serves as a receptor for EBOV. As we found that TIM-1 is expressed on a number of mucosal epithelial surfaces, we propose that TIM-1/ EBOV interactions may serve as a conduit for filovirus entry into ...
Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.