The protein Sonic hedgehog (Shh) is essential for a variety of patterning events during development. It is the signal from the notochord that induces ventral cell fate in the neural tube and somites, and is the polarizing signal for patterning of the anterior-posterior axis of the developing limb bud. Because of these and other inductive functions of Shh, it is important to understand how the Hedgehog (Hh) signal is received by the target cells. Here we describe binding studies using labelled Shh that strongly suggest that the Hh receptor is encoded by patched (ptc), a gene first identified in genetic screens in Drosophila.
As the receptor-binding protein of herpes simplex virus (HSV), gD plays an essential role in virus entry. In its native state, the last 56 amino acids of the ectodomain C terminus (C-term) occlude binding to its receptors, herpesvirus entry mediator (HVEM) and nectin-1. Although it is clear that movement of the C-term must occur to permit receptor binding, we believe that this conformational change is also a key event for triggering later steps leading to fusion. Specifically, gD mutants containing disulfide bonds that constrain the C-term are deficient in their ability to trigger fusion following receptor binding. In this report, we show that two newly made monoclonal antibodies (MAbs), MC2 and MC5, have virus-neutralizing activity but do not block binding of gD to either receptor. In contrast, all previously characterized neutralizing anti-gD MAbs block binding of gD to a receptor(s). Interestingly, instead of blocking receptor binding, MC2 significantly enhances the affinity of gD for both receptors. Several nonneutralizing MAbs (MC4, MC10, and MC14) also enhanced gD-receptor binding. While MC2 and MC5 recognized different epitopes on the core of gD, these nonneutralizing MAbs recognized the gD C-term. Both the neutralizing capacity and rate of neutralization of virus by MC2 are uniquely enhanced when MC2 is combined with MAb MC4, MC10, or MC14. We suggest that MC2 and MC5 prevent gD from performing a function that triggers later steps leading to fusion and that the epitope for MC2 is normally occluded by the C-term of the gD ectodomain.
Four glycoproteins (gD, gB, gH, and gL) are essential for herpes simplex virus (HSV) entry into cells. An early step of fusion requires gD to bind one of several receptors, such as nectin-1 or herpesvirus entry mediator (HVEM). We hypothesize that a conformational change in gD occurs upon receptor binding that triggers the other glycoproteins to mediate fusion. Comparison of the crystal structures of gD alone and gD bound to HVEM reveals that upon HVEM binding, the gD N terminus transitions from a flexible stretch of residues to a hairpin loop. To address the contribution of this transition to the ability of gD to trigger fusion, we attempted to "lock" the gD N terminus into a looped conformation by engineering a disulfide bond at its N and C termini. The resulting mutant (gD-A3C/Y38C) failed to trigger fusion in the absence of receptor, suggesting that formation of the loop is not the sole fusion trigger. Unexpectedly, although gD-A3C/Y38C bound HVEM, it failed to bind nectin-1. This was due to the key role played by Y38 in interacting with nectin-1. Since tyrosines are often "hot spot" residues at the center of protein-protein interfaces, we mutated residues that surround Y38 on the same face of gD and tested their binding and functional properties. Our results suggest that this region of gD is important for nectin-1 interaction and is distinct from but partially overlaps the site of HVEM binding. Unique gD mutants with altered receptor usage generated in this study may help dissect the roles played by various HSV receptors during infection.Herpes simplex virus (HSV) is a human pathogen that typically causes lesions on mucosal surfaces and spreads to the peripheral nervous system to establish life-long latency. The viral envelope contains at least 11 membrane glycoproteins, and 4 of these (gD, gH, gL, and gB) are essential for entry of HSV into cells and for cell-cell fusion (53,59). An early and necessary step of this process involves the binding of gD to one of several known cell surface receptors (4, 53).A recent study showed that gD engineered to bind an unrelated receptor can mediate virus entry into cells that bear that receptor (70). Based on this observation, the authors proposed that the only role of the gD-receptor interaction is to bring the envelope in juxtaposition to the plasma membrane. In many viral systems, however, entry is accomplished by the binding of a viral glycoprotein to a receptor, followed by a conformational change in that glycoprotein that triggers virus-cell fusion. Since gB, gH, and gL are conserved in all herpesviruses, it is widely accepted that they constitute the basic fusion machinery, but how their fusogenic activity is triggered is unknown. What varies among the herpesviruses are the viral receptor binding proteins and the specific cellular receptors. We hypothesize that one or more specific conformational changes occur in gD upon receptor binding that allow gH/gL heterodimer and/or gB to accomplish the fusion step (4,20,25,53,54).Two of the molecules that serve as HSV ent...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.