Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-gamma enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.
Simian immunodeficiency virus (SIV) infection of rhesus macaques is a valuable animal model for human immunodeficiency virus (HIV)-1 vaccine development. Our laboratory recently described the immunogenicity and limited efficacy of a vif-deleted SIVmac239 proviral DNA (SIV/CMVΔvif) vaccine. The current report characterizes immunogenicity and efficacy for the SIV/CMVΔvif proviral DNA vaccine when co-inoculated with an optimized rhesus interleukin (rIL)-15 expression plasmid. Macaques co-inoculated with rIL-15 and SIV/CMVΔvif proviral plasmids showed significantly improved SIV-specific CD8 T cell immunity characterized by increased IFN-γ ELISPOT and polyfunctional CD8 T cell responses. Furthermore, these animals demonstrated a sustained suppression of plasma virus loads after multiple low dose vaginal challenges with pathogenic SIVmac251. Importantly, SIV-specific cellular responses were greater in immunized animals compared to unvaccinated controls during the initial 12 weeks after challenge. Taken together, these findings support the use of IL-15 as an adjuvant in prophylactic anti-HIV vaccine strategies.
Feline immunodeficiency virus (FIV) DNA vaccine approaches that included a vif-deleted FIV provirus (FIV-pPPRΔvif) and feline cytokine expression plasmids were tested for immunogenicity and efficacy by immunization of specific pathogen free cats. Vaccine protocols included FIV-pPPRΔvif plasmid alone; a combination of FIV-pPPRΔvif DNA and feline granulocyte macrophage-colony stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α expression plasmids; or a combination of FIV-pPPRΔvif and feline interleukin (IL)-15 plasmids. Cats immunized with FIV-pPPRΔvif, GM-CSF and TNF-α plasmids demonstrated an increased frequency of FIV-specific T cell proliferation responses compared to other vaccine groups. Immunization with FIV-pPPRΔvif and IL-15 plasmids was distinguished from other vaccine protocols by the induction of antiviral antibodies. Suppression of virus loads was not observed for any of the FIV-pPPRΔvif DNA vaccine protocols after challenge with the FIV-PPR isolate. However, prior immunization with FIV-pPPRΔvif, GM-CSF, and TNF-α plasmids resulted in preservation of CD4 T cell functions, including mitogen-induced cytokine expression and antigen-specific proliferation upon infection with FIV. These findings justify further examination of cytokine combinations as adjuvants for lentiviral DNA vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.