Abstract. The Tropical Ocean-Global Atmosphere (TOGA) program sought to determine the predictability of the coupled ocean-atmosphere system. The World Climate Research Programme's (WCRP) Global Ocean-Atmosphere-Land System (GOALS) program seeks to explore predictability of the global climate system through investigation of the major planetary heat sources and sinks, and interactions between them. The Asian-Australian monsoon system, which undergoes aperiodic and high amplitude variations on intraseasonal, annual, biennial and interannual timescales is a major focus of GOALS. Empirical seasonal forecasts of the monsoon have been made with moderate success for over 100 years. More recent modeling efforts have not been successful. Even simulation of the mean structure of the Asian monsoon has proven elusive and the observed ENSO-monsoon relationships has been difficult to replicate. Divergence in simulation skill occurs between integrations by different models or between members of ensembles of the same model. This degree of spread is surprising given the relative success of empirical forecast techniques. Two possible explanations are presented: difficulty in modeling the monsoon regions and nonlinear error growth due to regional hydrodynamical instabilities. It is argued that the reconciliation of these explanations is imperative for prediction of the monsoon to be improved. To this end, a thorough description of observed monsoon variability and the physical processes that are thought to be important is presented. Prospects of improving prediction and some strategies that may help achieve improvement are discussed. IntroductionThe annual cycle of the monsoon systems has led the inhabitants of monsoon regions to divide their lives, customs, and economies into two distinct phases: the "wet" and the "dry." The wet phase refers to the rainy season during which warm, moist, and very disturbed winds blow inland from the warm tropical oceans. The dry phase refers to the other half of the year when winds bring cool and dry air from the winter continents. This distinct variation of the annual cycle occurs over Asia, Australia, west Africa, and in the Americas. In some locations (e.g., in the Asia-Australia sector) the dry winter air flows across the equa- Agricultural practices have traditionally been tied strictly to the annual cycle. Whereas the regularity of the warm and moist and cool and dry phases of the monsoon would seem to be ideal for agricultural societies, their very regularity makes agriculture susceptible to small changes in the annual cycle. Small variations in the timing and quantity of rainfall have the potential for significant societal consequences. A weak monsoon year (i.e., significantly less total rainfall than normal) generally corresponds to low crop yields. A strong monsoon usually produces abundant crops, although too much rainfall may produce devastating floods. In addition to the importance of the strength of the overall monsoon in a particular year, forecasting the onset of the subseasonal vari...
We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bølling-Allerød (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO(2) forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.
The authors investigate the atmospheric response to projected Arctic sea ice loss at the end of the twentyfirst century using an atmospheric general circulation model (GCM) coupled to a land surface model. The response was obtained from two 60-yr integrations: one with a repeating seasonal cycle of specified sea ice conditions for the late twentieth century and one with that of sea ice conditions for the late twentyfirst century (2080-99). In both integrations, a repeating seasonal cycle of SSTs for 1980-99 was prescribed to isolate the impact of projected future sea ice loss. Note that greenhouse gas concentrations remained fixed at 1980-99 levels in both sets of experiments. The twentieth-and twenty-first-century sea ice (and SST) conditions were obtained from ensemble mean integrations of a coupled GCM under historical forcing and Special Report on Emissions Scenarios (SRES) A1B scenario forcing, respectively.The loss of Arctic sea ice is greatest in summer and fall, yet the response of the net surface energy budget over the Arctic Ocean is largest in winter. Air temperature and precipitation responses also maximize in winter, both over the Arctic Ocean and over the adjacent high-latitude continents. Snow depths increase over Siberia and northern Canada because of the enhanced winter precipitation. Atmospheric warming over the high-latitude continents is mainly confined to the boundary layer (below ;850 hPa) and to regions with a strong low-level temperature inversion. Enhanced warm air advection by submonthly transient motions is the primary mechanism for the terrestrial warming. A significant large-scale atmospheric circulation response is found during winter, with a baroclinic (equivalent barotropic) vertical structure over the Arctic in November-December (January-March). This response resembles the negative phase of the North Atlantic Oscillation in February only. Comparison with the fully coupled model reveals that Arctic sea ice loss accounts for most of the seasonal, spatial, and vertical structure of the high-latitude warming response to greenhouse gas forcing at the end of the twenty-first century.
The climate sensitivity of CCSM3 is studied for two past climate forcings, the Last Glacial Maximum (LGM) and the mid-Holocene. The LGM, approximately 21,000 years ago, is a glacial period with large changes in the greenhouse gases, sea level, and ice sheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.