The heterogeneity in the healthy human immune system, and the immunological changes that portend various diseases, have been only partially described. Their comprehensive elucidation has been termed the ‘Human Immunology Project’. The accurate measurement of variations in the human immune system requires precise and standardized assays to distinguish true biological changes from technical artefacts. Thus, to be successful, the Human Immunology Project will require standardized assays for immunophenotyping humans in health and disease. A major tool in this effort is flow cytometry, which remains highly variable with regard to sample handling, reagents, instrument setup and data analysis. In this Review, we outline the current state of standardization of flow cytometry assays and summarize the steps that are required to enable the Human Immunology Project.
T-helper type 17 cells (T(H)17) are implicated in rodent models of immune-mediated diseases. Here we report their involvement in human uveitis and scleritis, and validate our findings in experimental autoimmune uveoretinitis (EAU), a model of uveitis. T(H)17 cells were present in human peripheral blood mononuclear cells (PBMC), and were expanded by interleukin (IL)-2 and inhibited by interferon (IFN)-gamma. Their numbers increased during active uveitis and scleritis and decreased following treatment. IL-17 was elevated in EAU and upregulated tumor necrosis factor (TNF)-alpha in retinal cells, suggesting a mechanism by which T(H)17 may contribute to ocular pathology. Furthermore, IL-27 was constitutively expressed in retinal ganglion and photoreceptor cells, was upregulated by IFN-gamma and inhibited proliferation of T(H)17. These findings suggest that T(H)1 cells may mitigate uveitis by antagonizing the T(H)17 phenotype through the IFN-gamma-mediated induction of IL-27 in target tissue. The finding that IL-2 promotes T(H)17 expansion provides explanations for the efficacy of IL-2R antibody therapy in uveitis, and suggests that antagonism of T(H)17 by IFN-gamma and/or IL-27 could be used for the treatment of chronic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.