The surfacing technologies are used for constitution of protection layer against wear and is destined for obtaining coating with high hardness. Among many weldings methods currently used to obtain the hard surface layer one of the most effective way of hardfacing is using flux cored arc welding. This additional material gives more possibilities to make expected hard surface layer. Chemical composition, property and economic factors obtained in flux cored wire are much richer in comparison to these obtained with other additional materials. This is the reason why flux cored wires give possibilities of application this kind of material for improving surface in different sectors of industry. In the present paper the imperfection in the layers was used for hardfacing process in different situations to show the possible application in the surface layer. The work presents studies of imperfection of the welds, contains the picture of microstructures, macrostructures and shows the results of checking by visual and penetrant testing methods.
The rebuilding technologies are used to develop surface of ladle. Among many welding methods currently used to obtain surface layer without defects one of the most effective way of rebuilding is using metal arc welding. This additional material gives more possibilities to make expected quality of rebuild surface. Chemical composition, property and economic factors allow to use metal wire. Because of these reasons, solid wire gives opportunity to be wildly used as material to rebuild or repair the surface in different sectors of industry. The paper shows a few ways to rebuild the surface in the massive cast with the use of metal active gas welding for repair. The work presents studies of defect in the massive cast. It contains the pictures of microstructures and defects. The method of removing defects and the results of checking by visual and penetrant testing methods are shown. The paper describes the methodology of repair the ladle with metal active gas welding, preheating process and standards nondestructive testing method.
W pracy przedstawiono wyniki badań nad napoinami trudnościeralnymi przeznaczonymi do pracy w warunkach przemysłu cementowego. Głównym celem pracy była próba wykonania pełnego kwalifikowania procesu napawania półautomatycznego zgodnie z wymaganiami PN EN ISO 15614-7 przy wykorzystaniu drutu dającego twardości sięgające do 60 HRC warstwy wierzchniej w jednym przejściu o ściegu szerokim na 10 i 20 mm. Następnie próbki poddano badaniom nieniszczącym to jest badaniom wizualnym i penetracyjnym oraz badaniom niszczącym w postaci badań metalograficznych makroskopowych i mikroskopowych, badaniu twardości. Zastosowanie niniejszej normy nie daje możliwości akceptacji kwalifikowania technologii napawania z wykorzystaniem materiałów dających bardzo twarde warstwy wierzchnie zawierające w swojej strukturze wydzielenia węglikowe.
The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self shielded flux cored arc welding (FCAW-S). Chemical composition obtained in flux cored wire is much more rich in comparison to this obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical microscopy and X-ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of investigated coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.