The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.″1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned.
A system of 5020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically retarget their optical fibers every 10–20 minutes, each to a precision of several microns, with a reconfiguration time of fewer than 2 minutes. Over the next 5 yr, they will enable the newly constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5020 robotic positioners and optical fibers, DESI’s Focal Plane System includes six guide cameras, four wave front cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multiobject, fiber-fed spectrographs.
The Dark Energy Spectroscopic Instrument (DESI) is a 5000 fiber multi-object spectrometer now being installed at the prime focus of the 4 m Mayall telescope at Kitt Peak. Using DESI to measure ∼35 million galaxy redshifts and using the Baryon Acoustic Oscillation (BAO) technique to measure distances, the results will probe the nature of the recently discovered mysterious component of our universe called dark energy. Computer controlled robotic positioners move the 120 μm diameter fibers to positions of galaxies whose location on the sky have been obtained in a previous target selection imaging survey. To achieve good throughput the fibers should be centered on the target position to within 3 μm. The robotic positioners however are only capable of a 50 μm precision on their first move. To achieve the desired precision, the Fiber View Camera (FVC) system has been implemented. The FVC, located near the hole in the primary mirror of the Mayall telescope, has been designed to take an exposure of the focal plane, located at the prime focus some 12 m above the FVC, after the robotic positioners have completed their first move. The FVC is intended to measure the fiber locations with a precision of 3 μm and issue a set of fiber coordinate corrections for the second move correcting the fiber positions by the robotic positioners. Tests show that after two iterations better than 99% of the fibers will be in their intended location to within the desired precision. This paper describes the design of the FVC system, the R&D program preceding the final design, and the tests that have been carried out to demonstrate that the FVC can achieve the required precision.
MegaMapper is a proposed ground-based experiment to measure Inflation parameters and Dark Energy from galaxy redshifts at 2¡z¡5. A 6.5-m Magellan telescope will be coupled with DESI spectrographs to achieve multiplexing of 20,000. MegaMapper would be located at Las Campanas Observatory to fully access LSST imaging for target selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.