The objective of this study is to investigate the forced convection from and the flow around a heated cylinder. Experimental and computational results are presented for laminar flow around a heated circular cylinder with a diameter of 10 mm. The experiments were carried out using Particle Image Velocimetry (PIV) in a wind tunnel, and numerical simulations using an in-house code and a commercial software package, FLUENT. This paper presents comparisons for vorticity and temperature contours in the wake of the cylinder. Experimental and computational results are compared with those available in the literature for heated and unheated cylinders. An equation is suggested for a temperature-dependent coefficient defining a reference temperature to be used in place of the constant used in other studies. An attempt is also made to correct differences between average cylinder surface temperature and measured interior temperature of the cylinder.
Quantifying the influence of flow conditions on cell viability is essential for a successful control of cell growth and cell damage in major biotechnological applications, such as in recombinant protein and antibody production or vaccine manufacturing. In the last decade, new bioreactor types have been developed. In particular, bioreactors with wave-induced motion show interesting properties (e.g., disposable bags suitable for cGMP manufacturing, no requirement for cleaning and sterilization of cultivation vessels, and fast setup of new production lines) and are considered in this study. As an additional advantage, it is expected that cultivations in such bioreactors result in lower shear stress compared with conventional stirred tanks. As a consequence, cell damage would be reduced as cell viability is highly sensitive to hydrodynamic conditions. To check these assumptions, an experimental setup was developed to measure the most important flow parameters (liquid surface level, liquid velocity, and liquid and wall shear stress) in two cellbag sizes (2 and 20 L) of Wave Bioreactors®. The measurements confirm in particular low shear stress values in both cellbags, indicating favorable hydrodynamic conditions for cell cultivation.
Inter-particle collisions in turbulent flows are of central importance for many engineering applications and environmental processes. For instance, collision and coalescence is the mechanism for warm rain initiation in cumulus clouds, a still poorly understood issue. This work presents measurements of droplet-droplet interactions in a laboratory turbulent flow, allowing reproducibility and control over initial and boundary conditions. The measured two-phase flow reproduces conditions relevant to cumulus clouds. The turbulent flow and the droplet size distribution are well characterized, and independently the collision rate is measured. Two independent experimental approaches for determining the collision rate are compared with each other: (i) a highmagnification shadowgraphy setup is employed, applying a deformation threshold as collision indicator. This technique has been specifically adapted to measure droplet collision probability in dispersed two-phase flows. (ii) Corresponding results are compared for the first time with a particle tracking approach, post-processing high-speed shadowgraphy image sequences. Using the measured turbulence and droplet properties, the turbulent collision kernel can be calculated for comparison. The two independent measurements deliver comparable orders of magnitude for the collision probability, highlighting the quality of the measurement process, even if the comparison between both
Experiments in wind tunnels concerning meteorological issues are not very frequent in the literature. However, such experiments might be essential, for instance for a careful investigation of droplet-droplet interactions in turbulent flows. This issue is crucial for many configurations, in particular to understand warm rain initiation. It is clearly impossible to completely reproduce cloud turbulence within a wind tunnel due to the enormous length scales involved. Nevertheless, it is not necessary to recover the whole spectrum in order to quantify droplet interactions. It is sufficient for this purpose to account correctly for the relevant properties only. In the present paper, these properties and a methodology for setting those in a two-phase wind tunnel are first described. In particular, droplet size and number density, velocities, turbulent kinetic energy, k, and its dissipation rate, ɛ, are suitably reproduced, as demonstrated by non-intrusive measurement techniques. A complete experimental characterization of the air and droplet properties is freely available in a database accessible at http://www.ovgu.de/isut/lss/metstroem. Finally, quantifications of droplet collision rates and comparisons with theoretical predictions are presented, showing that measured collision rates are higher, typically by a factor of 2 to 5. These results demonstrate that model modifications are needed to estimate correctly droplet collision probabilities in turbulent flows
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.