CyO2 is a cyclotide with potent activity against Gram-negative bacteria. The charged residues in cyO2 are all required for optimum antibacterial activity. In combination with its previously demonstrated cytotoxic activity against cancer cells and the general stability of cyclotides, cyO2 provides a promising scaffold for future drug design.
In recent years, the cyclotides have emerged as the largest family of naturally cyclized proteins. Cyclotides display potent cytotoxic activity that varies with the structure of the proteins, and combined with their unique structure, they represent novel cytotoxic agents. However, their mechanism of action is yet unknown. In this work we show that disruption of cell membranes plays a crucial role in the cytotoxic effect of the cyclotide cycloviolacin O2 (1), which has been isolated from Viola odorata. Cell viability and morphology studies on the human lymphoma cell line U-937 GTB showed that cells exposed to 1 displayed disintegrated cell membranes within 5 min. Functional studies on calcein-loaded HeLa cells and on liposomes showed rapid concentration-dependent release of their respective internal contents. The present results show that cyclotides have specific membrane-disrupting activity.
The cyclotide family of plant-derived peptides is defined by a cyclic backbone and three disulfide bonds locked into a cyclic cystine knot. They display a diverse range of biological activities, many of which have been linked to an ability to target biological membranes. In the current work, we show that membrane binding and disrupting properties of prototypic cyclotides are dependent on lipid composition, using neutral (zwitterionic) membranes with or without cholesterol and/or anionic lipids. Cycloviolacin O2 (cyO2) caused potent membrane disruption, and showed selectivity towards anionic membranes, whereas kalata B1 and kalata B2 cyclotides were significantly less lytic towards all tested model membranes. To investigate the role of the charged amino acids of cyO2 in the membrane selectivity, these were neutralized using chemical modifications. In contrast to previous studies on the cytotoxic and antimicrobial effects of these derivatives, the Glu6 methyl ester of cyO2 was more potent than the native peptide. However, using membranes of Escherichia coli lipids gave the opposite result: the activity of the native peptide increased 50-fold. By using a combination of ellipsometry and LC-MS, we demonstrated that this unusual membrane specificity is due to native cyO2 extracting preferentially phosphatidylethanolamine-lipids from the membrane, i.e., PE-C16:0/cyC17:0 and PE-C16:0/C18:1.
Cyclotides stand out as the largest family of circular proteins of plant origin hitherto known, with more than 280 sequences isolated at peptide level and many more predicted from gene sequences. Their unusual stability resulting from the signature cyclic cystine knot (CCK) motif has triggered a broad interest in these molecules for potential therapeutic and agricultural applications. Since the time of the first cyclotide discovery, our laboratory in Uppsala has been engaged in cyclotide discovery as well as the development of protocols to isolate and characterize these seamless peptides. We have also developed methods to chemically synthesize cyclotides by Fmoc-SPPS, which are useful in protein grafting applications. In this review, experience in cyclotide research over two decades and the recent literature related to their structures, synthesis, and folding as well the recent proof-of-concept findings on their use as "epitope" stabilizing scaffolds are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.