Deep learning has shown impressive performance acrosshealth management and prognostics applications. Nowadays, an emerging trend of machine learning deployment on resource constraint hardware devices like micro-controllers(MCU) has aroused much attention. Given the distributed andresource constraint nature of many PHM applications, using tiny machine learning models close to data source sensors for on-device inferences would be beneficial to save both time andadditional hardware resources. Even though there has beenpast works that bring TinyML on MCUs for some PHM ap-plications, they are mainly targeting single data source usage without higher-level data incorporation with cloud computing.We study the impact of potential cooperation patterns betweenTinyML on edge and more powerful computation resources oncloud and how this would make an impact on the application patterns in data-driven prognostics. We introduce potential ap-plications where sensor readings are utilized for system health status prediction including status classification and remaining useful life regression. We find that MCUs and cloud com-puting can be adaptive to different kinds of machine learning models and combined in flexible ways for diverse requirement.Our work also shows limitations of current MCU-based deep learning in data-driven prognostics And we hope our work can
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.