Numerical simulations of a planar air/water air-blast atomization are performed using an in-house multiphase Navier–Stokes solver which uses a semi-Lagrangian geometric volume of fluid method to track the position of the interface. This solver conserves mass exactly and mitigates momentum and kinetic energy conservation errors. Excellent agreement with recent experiments is obtained when comparing physical quantities, such as the liquid cone length, maximum wave frequency and spatial growth rate of the primary instability. The inclination of the gas inflow, which mimics the slope of the separator plate, is shown to enhance the primary atomization. A three-dimensional large-eddy simulation, run using physically correct air/water parameters, is used to provide the statistics of the flow. The gas layer is laminar close to the entrance and becomes turbulent at positions further downstream. The liquid wave crests expand in thin sheets, which break into secondary droplets, as observed in experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.