TDMA has been proposed as a MAC protocol for wireless sensor networks (WSNs) due to its efficiency in high WSN load. However, TDMA is plagued with shortcomings; we present modifications to TDMA that will allow for the same efficiency of TDMA, while allowing the network to conserve energy during times of low load (when there is no activity being detected). Recognizing that aggregation plays an essential role in WSNs, TDMA-ASAP adds to TDMA: (a) transmission parallelism based on a level-by-level localized graph-coloring, (b) appropriate sleeping between transmissions ("napping"), (c) judicious and controlled TDMA slot stealing to avoid empty slots to be unused and (d) intelligent scheduling/ordering transmissions. Our results show that TDMA-ASAP's unique combination of TDMA, slot-stealing, napping, and message aggregation significantly outperforms other hybrid WSN MAC algorithms and has a performance that is close to optimal in terms of energy consumption and overall delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.