This is the 54th report of a series of workshops organised by the European Centre for the Validation of Alternative Methods (ECVAM). The main objective of ECVAM, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences, and which reduce, refine or replace the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures that would enable it to become well informed about the state-of-the-art of non-animal test development and validation, and of opportunities for the possible incorporation of alternative methods into regulatory procedures. It was decided that this would be best achieved through a programme of ECVAM workshops, each addressing a specific topic, and at which selected groups of independent international experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward.A workshop on Metabolism: a bottleneck in in vitro toxicological test development, was held at
In order to minimize expensive drug failures, is essential to determine potential activity, toxicity and ADME problems as early as possible. In view of the large libraries of compounds now being handled by combinatorial chemistry and high-throughput screening, identification of potential drug is advisable even before synthesis using computational techniques such as QSAR modeling. A great number of in silico approaches to activity/toxicity prediction have been described in the literature, using molecular 0D, 1D, 2D and 3D descriptors. Also these descriptors have been implemented in available computational tools such as DRAGON, SYBYL and CODESSA for it easy use. However, many of them only have been used to explain a few prediction problems. This review attempts to summarize present knowledge related to the computational biological activity prediction based in 2D molecular descriptors implemented in the DRAGON software. These applications rely on new computational techniques such as virtual combinatorial synthesis, virtual computational screening or inverse. Several topological molecular descriptors applications are described, ranging from simple topological indices to topological indices derived from matrices weighted with atomic and bond properties. Their advantages, limitations and its possibilities in drug design are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.