The development of new techniques for measuring intracellular free Mg2+ during the 1980s has provided investigators with the tools needed to produce new insights into the regulation of cellular magnesium. Within the limits of this technology, it appears that all mammalian cells maintain free cytosolic Mg2+ levels within the fairly narrow range of 0.25-1 mM. While transport mechanisms and sequestration within cellular organelles will contribute to this regulation, it is binding of Mg2+ to an as yet poorly defined system of buffers that is largely responsible for determining the set point of this regulation. The lack of an adequately Mg2+-selective ionophore remains an impediment to progress in this area.
A glutamate-binding protein from rat brain synaptic plasma membranes has been purified to apparent homogeneity. This protein has a Mr of 14,300 based on amino acid and carbohydrate analyses. The protein is enriched with tryptophan residues, which contribute substantially to its hydrophobic nature. It also has a relatively high content of acidic amino acids, which determine is low isoelectric point (4.82). The protein exhibits either a single, high-affinity class of sites for L-[3H]glutamate binding (KD = 0.13 microM) when binding is measured at low protein concentrations, or two classes of sites with high (KD = 0.17 microM) and low affinities (KD = 0.8 microM) when binding is measured at high protein concentrations. These observations suggest preferential binding of L-glutamate to a self-associating form of the protein. The displacement of protein-bound L-[3H]glutamic acid by other neuroactive amino acids has characteristics similar to those observed for displacement of L-glutamate from membrane binding sites. Chemical modification of the cysteine and arginine residues results in an inhibition of glutamate binding activity. The possible function of this protein in the physiologic glutamate receptor complex of neuronal membranes is discussed.
The acute effects of epidermal growth factor (EGF) on Mg2+ homeostasis were studied in differentiated BC3H1 myocytes. EGF produced a 48-fold stimulation of [3H]thymidine incorporation into quiescent serum-starved cells in the presence of Mg2+, whereas insulin had no effect on [3H]thymidine incorporation. The dose dependence of EGF-stimulated [3H]thymidine incorporation was similar to that of EGF stimulation of 28Mg2+ uptake. In cells loaded with the Mg(2+)-sensitive fluorescent indicator, Mag-fura-2, intracellular Mg2+ concentration ([Mg2+]i) increased after exposure to EGF after a 5-min lag; a similar lag was routinely observed before the stimulation of 28Mg2+ uptake by EGF. In control studies, cytosolic free Ca2+ levels and intracellular pH (pHi) were unchanged during 20 min of exposure to EGF. These results suggest that [Mg2+]i in BC3H1 cells is regulated by EGF. This regulation is not mediated by changes in pHi or intracellular Ca2+ concentration and may constitute an important event in the physiological response of these cells to EGF. The results are discussed within the context of cellular regulation of Mg2+ homeostasis.
To characterize the Mg2+ buffering of cultured chick ventricular myocytes, cytosolic Mg2+ was increased by liberating Mg2+ normally chelated by ATP upon total depletion of ATP content. Because the total Mg content and cell volume remained constant during this time, the difference between the amount of Mg2+ liberated (2.7 mM) and the 0.9 mM increase in cytosolic Mg2+ activity measured fluorometrically with mag-fura-2 indicates a sizable Mg2+ buffering. A new term, the Mg2+ buffer coefficient (BMg), was derived to quantify this buffering. We also determined that cytosolic Mg2+ activity increased by only 0.6 mM in cells acutely exposed to zero external Ca2+ during ATP depletion. In the absence of extracellular Ca2+, the basal cytosolic Ca2+ activity (alpha Ca2+i) was reduced by 72%, whereas the increase in alpha Ca2+i induced by ATP depletion was substantially blunted; no difference in either the time course of adenine nucleotide changes or the Ca and Mg content was observed. The BMg value calculated for these cells indicates that Mg2+ buffering is substantially greater in the absence of extracellular Ca2+ (2.5) than when extracellular Ca2+ is present (1.4), indicating that alpha Ca2+i affects cytosolic Mg2+ activity in ventricular myocytes. Therefore the Mg2+ buffering of ventricular myocytes appears to be comprised of at least two components: 1) a Ca(2+)-insensitive adenine nucleotide pool and 2) a Ca(2+)-sensitive nonadenine nucleotide pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.